
CATCHING UP WITHCATCHING UP WITH

Martin Hořeňovský @ Pex
1 . 1

CATCHING UP WITHCATCHING UP WITH

Martin Hořeňovský @ Pex
1 . 2

ABOUT THIS TALKABOUT THIS TALK

2 . 1

A new major release (v3) of Catch2 is coming,

2 . 2

A new major release (v3) of Catch2 is coming,

and as all major versions, that means changes.

2 . 2

For context, v3 has ~500 comits extra over v2

2 . 3

For context, v3 has ~500 comits extra over v2

there are 3786 commits total as of the time of writing

2 . 3

We will look into some changes that v3 will bring,

2 . 4

We will look into some changes that v3 will bring,

and also at some lesser known features in Catch2 v2.

2 . 4

2 . 5

CATCH2 ???CATCH2 ???

3 . 1

Catch2 is a fairly popular unit testing framework

3 . 2

Catch2 is a fairly popular unit testing framework

It differs significantly from xUnit frameworks

3 . 2

One of the big differences is in assertions.

3 . 3

One of the big differences is in assertions.

Assertions in Catch2 are just plain expressions:

3 . 3

One of the big differences is in assertions.

Assertions in Catch2 are just plain expressions:
 REQUIRE(factorial(0) == 1);

3 . 3

One of the big differences is in assertions.

Assertions in Catch2 are just plain expressions:
 REQUIRE(factorial(0) == 1);

C:\...\Catch2-talk-code\simple-usage.cpp(12): FAILED:
 REQUIRE(factorial(0) == 1)
with expansion:
 0 == 1

3 . 3

The other big difference are sections.

3 . 4

The other big difference are sections.

Sections define multiple paths through test code, and
are an effective replacement of fixtures for most cases.

3 . 4

The other big difference are sections.

Sections define multiple paths through test code, and
are an effective replacement of fixtures for most cases.

TEST_CASE("Section showcase 1") {
 std::cout << '1';
 SECTION("A") {
 std::cout << 'A';
 }
 SECTION("B") {
 std::cout << 'B';
 }
 std::cout << '\n';
}

3 . 4

Sections can be nested arbitrarily deeply:

3 . 5

Sections can be nested arbitrarily deeply:
TEST_CASE("Section showcase 2") {
 std::cout << '1';
 SECTION("A") {
 std::cout << 'A';
 SECTION("a") { std::cout << 'a'; }
 SECTION("b") { std::cout << 'b'; }
 }
 SECTION("B") {
 std::cout << 'B';
 SECTION("a") { std::cout << 'a'; }
 SECTION("b") { std::cout << 'b'; }
 }
 std::cout << '\n';
}

3 . 5

And last, test case names are just strings.

3 . 6

And last, test case names are just strings.
TEST_CASE("Basic example") {

 REQUIRE(factorial(0) == 1);
}

3 . 6

CHANGES IN V3CHANGES IN V3

4 . 1

THE BIG CHANGETHE BIG CHANGE

4 . 2

Catch2 is no longer distributed as a single header file,

4 . 3

Catch2 is no longer distributed as a single header file,

it is now a plain old static library with multiple
headers.

4 . 3

WHY?WHY?

4 . 4

WHY?WHY?

easier to maintain

4 . 4

WHY?WHY?

easier to maintain
cheaper to add new features

4 . 4

WHY?WHY?

easier to maintain
cheaper to add new features
works better with dependency managers

4 . 4

WHY?WHY?

easier to maintain
cheaper to add new features
works better with dependency managers
compiles faster

4 . 4

EASIER TO MAINTAINEASIER TO MAINTAIN

4 . 5

EASIER TO MAINTAINEASIER TO MAINTAIN

The old single header distribution was lying.

4 . 5

EASIER TO MAINTAINEASIER TO MAINTAIN

The old single header distribution was lying.

There was one file with both a header and a cpp file.

4 . 5

EASIER TO MAINTAINEASIER TO MAINTAIN

The old single header distribution was lying.

There was one file with both a header and a cpp file.

The separation had to be maintained manually.

4 . 5

CHEAPER TO ADD NEW FEATURESCHEAPER TO ADD NEW FEATURES

4 . 6

CHEAPER TO ADD NEW FEATURESCHEAPER TO ADD NEW FEATURES

For single header, the bar to add features is high.

4 . 6

CHEAPER TO ADD NEW FEATURESCHEAPER TO ADD NEW FEATURES

For single header, the bar to add features is high.

Everyone pays the compilation cost of new features.

4 . 6

CHEAPER TO ADD NEW FEATURESCHEAPER TO ADD NEW FEATURES

For single header, the bar to add features is high.

Everyone pays the compilation cost of new features.

For context, the header has 642 KB and 18k lines.

4 . 6

WORKS BETTER WITH DEP. MANAGERSWORKS BETTER WITH DEP. MANAGERS

4 . 7

WORKS BETTER WITH DEP. MANAGERSWORKS BETTER WITH DEP. MANAGERS

With single header distribution, the user still has to
provide an "implementation" TU.

4 . 7

WORKS BETTER WITH DEP. MANAGERSWORKS BETTER WITH DEP. MANAGERS

With single header distribution, the user still has to
provide an "implementation" TU.

With a classic library the user can just include headers.

4 . 7

COMPILES FASTERCOMPILES FASTER

4 . 8

COMPILES FASTERCOMPILES FASTER

Less code compiles faster.

4 . 8

COMPILES FASTERCOMPILES FASTER

Less code compiles faster.

Who knew? ¯_(ツ)_/¯

4 . 8

WHY NOT?WHY NOT?

4 . 9

WHY NOT?WHY NOT?

If you manage your dependencies poorly, you can
have issues with inconsistent compilation options

4 . 9

WHY NOT?WHY NOT?

If you manage your dependencies poorly, you can
have issues with inconsistent compilation options
Harder* to vendor into your own project

4 . 9

OTHER CHANGES IN V3OTHER CHANGES IN V3

5 . 1

C++14 is the minimum supported language version

5 . 2

COMPILATION TIMESCOMPILATION TIMES

5 . 3

COMPILATION TIMESCOMPILATION TIMES

file contents speedup over v2

include 1.76x*

100 tests 1.36x

100 tests, 5 sections 1.10x

* About 160ms

5 . 3

RUNTIME PERFORMANCERUNTIME PERFORMANCE

5 . 4

RUNTIME PERFORMANCERUNTIME PERFORMANCE

task debug release

Check 1M assertions 1.10 1.02

Run 100 tests, 9 leaf sections 1.27 1.04

Run 3k tests 1.49 1.22

Run 1 out of 3k tests 1.79 2.06

5 . 4

GENERIC MATCHERSGENERIC MATCHERS

5 . 5

GENERIC MATCHERSGENERIC MATCHERS
Matchers have been around since "Catch Classic" (1.x).

5 . 5

GENERIC MATCHERSGENERIC MATCHERS
Matchers have been around since "Catch Classic" (1.x).

They encapsulate a predicate on expected test output.

5 . 5

GENERIC MATCHERSGENERIC MATCHERS
Matchers have been around since "Catch Classic" (1.x).

They encapsulate a predicate on expected test output.

Old matchers can only match concrete types.

5 . 5

Generic matchers can provide overloaded and
templated match member function as needed.

5 . 6

Generic matchers can provide overloaded and
templated match member function as needed.

template <typename Range>
struct EqualsRangeMatcher : Catch::Matchers::MatcherGenericBase {

 // ... constructors, etc ...

 template <typename OtherRange>
 bool match(OtherRange const& other) const {
 using std::begin; using std::end;

 return std::equal(
 begin(m_range), end(m_range),
 begin(other), end(other));
 }
};

5 . 6

Catch2 provides some generic matchers built in:

5 . 7

Catch2 provides some generic matchers built in:

IsEmpty

5 . 7

Catch2 provides some generic matchers built in:

IsEmpty
SizeIs

5 . 7

Catch2 provides some generic matchers built in:

IsEmpty
SizeIs
Contains

5 . 7

Catch2 provides some generic matchers built in:

IsEmpty
SizeIs
Contains
AllMatch, AnyMatch, NoneMatch

5 . 7

Catch2 provides some generic matchers built in:

IsEmpty
SizeIs
Contains
AllMatch, AnyMatch, NoneMatch

More will be added over time

5 . 7

REPORTER CHANGESREPORTER CHANGES

5 . 8

REPORTER CHANGESREPORTER CHANGES
Reporters are a customization point for testing output

5 . 8

REPORTER CHANGESREPORTER CHANGES
Reporters are a customization point for testing output

They decide how tests, assertions, etc, are reported

5 . 8

REPORTER CHANGESREPORTER CHANGES
Reporters are a customization point for testing output

They decide how tests, assertions, etc, are reported

v3 allows for multiple reporters to be active

5 . 8

Each reporter can write to different file, or to stdout

5 . 9

Each reporter can write to different file, or to stdout
./tests/SelfTest -r junit:junit.xml -r console

5 . 9

Each reporter can write to different file, or to stdout

This writes the JUnit XML file to a file, and prints the
user-friendly console output to stdout

./tests/SelfTest -r junit:junit.xml -r console

5 . 9

Multireporters make partial reporters useful, e.g. for
writing out benchmark results into markdown tables.

5 . 10

v3 also made listings customizable by reporters

5 . 11

v3 also made listings customizable by reporters

e.g. the XML reporter outputs XML listings

5 . 11

$./tests/SelfTest -r xml --list-tests
<?xml version="1.0" encoding="UTF-8"?>
<MatchingTests>
 <TestCase>
 <Name>Test with special, characters "in name</Name>
 <ClassName/>
 <Tags>[cli][regression]</Tags>
 <SourceInfo>
 <File>/.../CmdLine.tests.cpp</File>
 <Line>574</Line>
 </SourceInfo>
 </TestCase>
 ...

5 . 12

Reporters actually went through bunch more changes:

5 . 13

Reporters actually went through bunch more changes:

Redundant reporter events were removed

5 . 13

Reporters actually went through bunch more changes:

Redundant reporter events were removed
New useful reporter events were added

5 . 13

Reporters actually went through bunch more changes:

Redundant reporter events were removed
New useful reporter events were added
Some existing events had their API changed

5 . 13

Reporters actually went through bunch more changes:

Redundant reporter events were removed
New useful reporter events were added
Some existing events had their API changed
Reporter bases were refactored

5 . 13

RECAPRECAP

5 . 14

RECAPRECAP
v3 brings better compile and runtime performance

5 . 14

RECAPRECAP
v3 brings better compile and runtime performance
Reporters will become a lot more powerful

5 . 14

RECAPRECAP
v3 brings better compile and runtime performance
Reporters will become a lot more powerful
Matchers can be written to be much more generic

5 . 14

LESS USED FEATURESLESS USED FEATURES

6 . 1

We will look at:

6 . 2

We will look at:

Data driven tests (generators)

6 . 2

We will look at:

Data driven tests (generators)
Type driven tests (templated test cases)

6 . 2

We will look at:

Data driven tests (generators)
Type driven tests (templated test cases)
Listeners

6 . 2

We will look at:

Data driven tests (generators)
Type driven tests (templated test cases)
Listeners
Micro benchmarking support

6 . 2

DATA DRIVEN TESTSDATA DRIVEN TESTS

7 . 1

Data driven testing means using the same test code for
different inputs.

7 . 2

Data driven testing means using the same test code for
different inputs.

(De)Serializing types is a common example.

7 . 2

WaitForKeypress::When toWaitForKeypress(std::string const& input)

7 . 3

WaitForKeypress::When toWaitForKeypress(std::string const& input)

TEST_CASE("WaitForKeypress parsing") {
 auto [input, output] = GENERATE(
 table<char const*, WaitForKeypress::When>({
 {"never", WaitForKeypress::Never},
 {"start", WaitForKeypress::BeforeStart},
 {"exit", WaitForKeypress::BeforeExit},
 {"both", WaitForKeypress::BeforeStartAndExit},
 })
);

 REQUIRE(toWaitForKeypress(input) == output);
}

7 . 3

There can be multiple GENERATEs per test/section.

7 . 4

There can be multiple GENERATEs per test/section.

They produce a cartesian product of all values.

7 . 4

There can be multiple GENERATEs per test/section.

They produce a cartesian product of all values.
TEST_CASE("Exhaustive config check") {
 bool implicative_blocks = GENERATE(true, false);
 bool implicative_diffs = GENERATE(true, false);

 // Actual test...
}

7 . 4

Test-path-wise, GENERATE behaves like a SECTION

7 . 5

Test-path-wise, GENERATE behaves like a SECTION
TEST_CASE("Nesting generators with SECTIONs") {
 auto number = GENERATE(2, 4);
 SECTION("A") {
 std::cout << "A\n";
 }
 SECTION("B") {
 auto number2 = GENERATE(1, 3);
 std::cout << "B\n";
 }
}

7 . 5

Test-path-wise, GENERATE behaves like a SECTION

Prints out "A\n", "B\n", "B\n", "A\n", "B\n", "B\n"

TEST_CASE("Nesting generators with SECTIONs") {
 auto number = GENERATE(2, 4);
 SECTION("A") {
 std::cout << "A\n";
 }
 SECTION("B") {
 auto number2 = GENERATE(1, 3);
 std::cout << "B\n";
 }
}

7 . 5

Generators do not have to know their size up front.

7 . 6

Generators do not have to know their size up front.

They can even be infinite, relying on later termination.

7 . 6

Generators do not have to know their size up front.

They can even be infinite, relying on later termination.
auto i = GENERATE(take(10,
 random(-100., 100.))
);

7 . 6

You can also mix constants and complex generators.

7 . 7

You can also mix constants and complex generators.
TEST_CASE("Mixing literals and complex generators") {
 auto i = GENERATE(88.2,
 take(10,
 random(-100., 100.))
);
 // test code
}

7 . 7

In v3 GENERATE decays literal arguments.

7 . 8

In v3 GENERATE decays literal arguments.

This fixes a possible bug when mixing primitive type
literals and complex generators.

7 . 8

In v3 GENERATE decays literal arguments.

This fixes a possible bug when mixing primitive type
literals and complex generators.

Also fixes mixing different length string literals.

7 . 8

You can of course write your own generators.

7 . 9

You can of course write your own generators.

For details look into the documentation.

7 . 9

TYPE DRIVEN TESTSTYPE DRIVEN TESTS

8 . 1

Type driven testing means using same test code for
different types.

8 . 2

Type driven testing means using same test code for
different types.

This is useful for testing generic code (e.g. containers).

8 . 2

TEMPLATE_TEST_CASE("You can have a test across multiple types", "",
 int, float) {
 std::vector<TestType> vec;

 vec.reserve(5);
 REQUIRE(vec.size() == 0);
 REQUIRE(vec.capacity() >= 5);
}

8 . 3

Catch2 provides a lot of macros for templated tests:

TEMPLATE_TEST_CASE
TEMPLATE_LIST_TEST_CASE
TEMPLATE_PRODUCT_TEST_CASE
TEMPLATE_TEST_CASE_SIG
and some more

8 . 4

Due to preprocessor limitations, types with commas
(e.g. map<string, string>) need to be passed in

parentheses (e.g. (map<string, string>)).

8 . 5

LISTENERSLISTENERS

9 . 1

Listeners are reporters without output.

9 . 2

Listeners are reporters without output.

Instead they perform actions within the test process.

9 . 2

Listeners are reporters without output.

Instead they perform actions within the test process.

e.g. they can initialize a C library before testing starts

9 . 2

Listeners are reporters without output.

Instead they perform actions within the test process.

e.g. they can initialize a C library before testing starts

... or they can drop logs if the test case passed.

9 . 2

class testRunListener : public Catch::EventListenerBase {
public:
 using Catch::EventListenerBase::EventListenerBase;

 void testRunStarting(Catch::TestRunInfo const&) override {
 lib_foo_init();
 }
};

CATCH_REGISTER_LISTENER(testRunListener)

9 . 3

There are 21 different listener/reporter events.

9 . 4

There are 21 different listener/reporter events.

4 for benchmarking

9 . 4

There are 21 different listener/reporter events.

4 for benchmarking
3 for listing things

9 . 4

There are 21 different listener/reporter events.

4 for benchmarking
3 for listing things
10 (5 pairs) for running tests

9 . 4

There are 21 different listener/reporter events.

4 for benchmarking
3 for listing things
10 (5 pairs) for running tests
4 miscellaneous

9 . 4

(MICRO)BENCHMARKING(MICRO)BENCHMARKING

10 . 1

Catch2 contains adapted code from Nonius.

10 . 2

Catch2 contains adapted code from Nonius.

Benchmarking blocks are written inside tests.

10 . 2

Benchmark block is started with a BENCHMARK macro

10 . 3

Benchmark block is started with a BENCHMARK macro
 BENCHMARK("factorial 30") {
 return factorial(30); // <-- won't be optimized away
 }; // <-- The semicolon must be there

10 . 3

$./benchmarks "Simple benchmark"
--
Simple benchmark
--
C:\ubuntu\presentations\Catch2-talk-examples\benchmarks.cpp(7)
..

benchmark name samples iterations estimated
 mean low mean high mean
 std dev low std dev high std dev
--
factorial 30 100 56111 5.6111 ms
 0.806206 ns 0.80412 ns 0.810233 ns
 0.0142946 ns 0.00862981 ns 0.0224988 ns

10 . 4

You can use generators to run benchmarks across
different inputs:

10 . 5

You can use generators to run benchmarks across
different inputs:

TEST_CASE("Parametrized benchmark") {
 auto input = GENERATE(1, 10, 15, 20, 30);

 BENCHMARK("factorial " + std::to_string(input)) {
 return factorial(input);
 };
}

10 . 5

The code inside the benchmark block will be executed
multiple times.

10 . 6

The code inside the benchmark block will be executed
multiple times.

It must be meaningfully repeatable.

10 . 6

You can have assertions inside benchmark block.

10 . 7

You can have assertions inside benchmark block.
 BENCHMARK("require(true)") {
 REQUIRE(true);
 };

10 . 7

You can have assertions inside benchmark block.

But they will be counted in the measured time.

 BENCHMARK("require(true)") {
 REQUIRE(true);
 };

10 . 7

There are more benchmarking utilities in Catch2,

10 . 8

There are more benchmarking utilities in Catch2,

you can find them in the benchmarking docs.

10 . 8

RECAPRECAP

11 . 1

v3 is coming soon (?) and targets C++14

11 . 2

v3 is coming soon (?) and targets C++14

v3 will be statically compiled library

11 . 2

v3 is coming soon (?) and targets C++14

v3 will be statically compiled library

v3 brings performance improvements

11 . 2

v3 is coming soon (?) and targets C++14

v3 will be statically compiled library

v3 brings performance improvements

v3 brings some useful new features

11 . 2

Catch2 already supports

11 . 3

Catch2 already supports

non-generic matchers

11 . 3

Catch2 already supports

non-generic matchers
benchmarking

11 . 3

Catch2 already supports

non-generic matchers
benchmarking
custom reporters

11 . 3

Catch2 already supports

non-generic matchers
benchmarking
custom reporters
event listeners

11 . 3

Catch2 already supports

non-generic matchers
benchmarking
custom reporters
event listeners
data and type parametrized tests

11 . 3

Catch2 already supports

non-generic matchers
benchmarking
custom reporters
event listeners
data and type parametrized tests
and more...

11 . 3

Catch2 already supports

non-generic matchers
benchmarking
custom reporters
event listeners
data and type parametrized tests
and more...

Catch2 usually provides good docs, read them!

11 . 3

THE END

11 . 4

QUESTIONS?QUESTIONS?

https://github.com/horenmar/Catch2-talk-examples

11 . 5

https://github.com/horenmar/Catch2-talk-examples

