COMPARISON WITH LITERAL 0 ?!?

Martin Horenovsky

=X

COMPARISON WITH LITERAL 0 ?!?

Martin Horenovsky

=X

C++20 added the spaceship operator

C++20 added the spaceship operator
if ((a <=> b) == 0) {

}

The result of <=> can only be compared with literal 0

The result of <=> can only be compared with literal 0

cmp.categories.pre p3

https://eel.is/c++draft/cmp.categories#pre-3

The result of <=> can only be compared with literal 0

cmp.categories.pre p3

The relational and equality operators for the comparison category types are specified with an anonymous parameter
of unspecified type. This type shall be selected by the implementation such that these parameters can accept literal @ as
a corresponding argument.

https://eel.is/c++draft/cmp.categories#pre-3

The result of <=> can only be compared with literal 0

cmp.categories.pre p3

The relational and equality operators for the comparison category types are specified with an anonymous parameter
of unspecified type. This type shall be selected by the implementation such that these parameters can accept literal @ as
a corresponding argument.

In this context, the behavior of a program that supplies an argument other than a literal @ is undefined.

https://eel.is/c++draft/cmp.categories#pre-3

The details are left to the stdlib ...

The details are left to the stdlib ...

... S0 how does a library do this?

CONSTEXPR TRICK

struct ZeroLiteralAsPointer {

constexpr
ZeroLiteralAsPointer(ZerolLiteralAsPointer*) noexcept {}

template <typename T,
typename = std::enable_if t«
Istd::is_same<T, int>::value
>>
constexpr ZerolLiteralAsPointer(T) = delete;

};

CONSTEVAL TRICK

void ZeroLiteralErrorFunc();

struct ZeroLiteralConsteval {
template <class T,
std::enable_if t<std::is same_ v<T, int>, int> = o>
consteval ZerolLiteralConsteval(T zero) noexcept {
if (zero =0) {
ZeroLiteralErrorFunc();

}
};

COMPARISON

constexpr consteval

standard required 11 20 (23)
SFINAE-friendly &)4
disallows 1-1 4 X
Usedby MSSTL A\ 4
Used by libc++ /N &7
Used by libstdc++ & X

/\ - Used previously, not anymore

Why are stdlibs moving to consteval?

Why are stdlibs moving to consteval?

It seems worse in all aspects ...

Why are stdlibs moving to consteval?
It seems worse in all aspects ...

... €xceptone.

Why are stdlibs moving to consteval?
It seems worse in all aspects ...
... €xceptone.

A, very, very, very, dumb one.

C++source #1 #

A~ BSave/load + Addnew..> VVim & Cpplnsights # Quick-bench
1 #include <compare:
2
3 struct ZeroliteralAsPointer {
4
= constexpr
6 ZeroLiteralAsPointer(ZerolLiteralAsPointer®) noexcept {}
7
8 template <typename T,
g typename = std::enable if t«¢
18 letd::is_same<T, int>::value
11 »»
12 constexpr ZerolLiteralAsPointer(T) = delete;
13 3
14
15 int main() {
16 ZerolLiteralAsPointer detector(8);
17 1}

Cutput of x86-64 clang 19.1.0 (Compiler #1) & X
A~ [OWraplines = Selectall

<source»:16:35: warning: zero as null pointer constant [-Wzero-as-null-pointer-constant]
16 | ZerglLiteralAsPointer detector(g);
| s
| nullptr
1 warning generated.
Compiler returned: @

| am not kidding: Microsoft/STL#3581

https://github.com/microsoft/STL/pull/3581

Fun fact: MSVC does not implement P2564

Fun fact: MSVC does not implement P2564
(V)"

CONCLUSION

We should stop standardizing magic library types

We should stop standardizing magic library types

Warnings can actively worsen everyone's code

Spaceship & comparison changes are a mess

Spaceship & comparison changes are a mess

See Catch2 for more fun issues

THE END

