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DISCLAIMERS
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Through the talk I will use floats as a shorthand for
floating-point numbers.
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Through the talk I will use floats as a shorthand for
floating-point numbers.

This talk is about IEEE 754 binary floats.

4.1



We will not get into the full nitty-gritty details.
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We will not get into the full nitty-gritty details.

We will look at floats through the lens of users.

5.1



    assert(0.1 + 0.2 == 0.3);
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    assert(0.1 + 0.2 == 0.3);

FAIL

6.1



    assert(0.1 + 0.2 == 0.3);

FAIL
    assert(20'000'000.f + 1 == 20'000'000.f);

6.2



    assert(0.1 + 0.2 == 0.3);

FAIL
    assert(20'000'000.f + 1 == 20'000'000.f);

PASS

6.3



    assert(0.1 + 0.2 == 0.3);

FAIL
    assert(20'000'000.f + 1 == 20'000'000.f);

PASS
    assert(20'000'000.f + 1.f + 1.f

                   ==

           1.f + 1.f + 20'000'000.f);

6.4



    assert(0.1 + 0.2 == 0.3);

FAIL
    assert(20'000'000.f + 1 == 20'000'000.f);

PASS
    assert(20'000'000.f + 1.f + 1.f

                   ==

           1.f + 1.f + 20'000'000.f);

FAIL

6.5



???
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All the results make perfect sense …
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All the results make perfect sense …

… if you understand how floats work.
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FAIL

PASS

FAIL

    assert(0.1 + 0.2 == 0.3);

    assert(20'000'000.f + 1 == 20'000'000.f);

    assert(20'000'000.f + 1.f + 1.f

                   ==

           1.f + 1.f + 20'000'000.f);
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TEST_CASE() {

    double a = 1;

    auto b = std::nextafter(a, 2);


    REQUIRE(a == b);

}
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TEST_CASE() {

    double a = 1;

    auto b = std::nextafter(a, 2);


    REQUIRE(a == b);

}

example.cpp:9: FAILED:

  REQUIRE( a == b )

with expansion:

  1.0 == 1.0
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CONTENTS
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CONTENTS
Decimal floats
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CONTENTS
Decimal floats
Binary floats
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CONTENTS
Decimal floats
Binary floats
IEEE-754 guarantees for math
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CONTENTS
Decimal floats
Binary floats
IEEE-754 guarantees for math
Comparing floats
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CONTENTS
Decimal floats
Binary floats
IEEE-754 guarantees for math
Comparing floats
When does it all break down?
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WHY ARE FLOATS WEIRD?
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DESIGN CONSTRAINTS
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DESIGN CONSTRAINTS

Usable for computations in .R
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DESIGN CONSTRAINTS

Usable for computations in .R
Must support both tiny and large numbers in the
same operation,
e.g. 
and 

.
0.000 000 000 067

2 000 000 000 000 000 000 000 000 000 000
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DESIGN CONSTRAINTS

Usable for computations in .R
Must support both tiny and large numbers in the
same operation,
e.g. 
and 

.
0.000 000 000 067

2 000 000 000 000 000 000 000 000 000 000
Efficiently implementable in HW.
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DECIMAL FLOATS
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(NORMALIZED) SCIENTIFIC NOTATION
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m ∗ 10n
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m ∗ 10n

m ∈ R, 1 ≤ |m| < 10

n ∈ Z

16.1



3.5

1.234

1.22

∗ 102

∗ 107

∗ 105
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FIXED LENGTH SCIENTIFIC NOTATION
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What if we can only use fixed number of digits?
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What if we can only use fixed number of digits?

X. Y Y Y ∗ 10Z

19.1



What if we can only use fixed number of digits?

X. Y Y Y ∗ 10Z

Negative numbers will be handled by separately
storing the minus sign.
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What if we can only use fixed number of digits?

X. Y Y Y ∗ 10Z

Negative numbers will be handled by separately
storing the minus sign.

The same goes for negative exponents.

19.3



We just defined a decimal floating point format.
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X. Y Y Y ∗ 10Z
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X. Y Y Y ∗ 10Z

 is called the mantissa.X. Y Y Y

21.1



X. Y Y Y ∗ 10Z

 is called the mantissa.X. Y Y Y

 is called the exponent.Z

21.2



The format can represent interval 
[−9 999 000 000, 9 999 000 000]
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The smallest representable positive number is

 ( )1.000 ∗ 10−9 0.000 000 001

23



or is it?
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or is it?

 ( )0.001 ∗ 10−9 0.000 000 000 001

24.1



Note that the absolute difference between two closest
numbers increases
with their magnitude.
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Note that the absolute difference between two closest
numbers increases
with their magnitude.

Relative difference remains the same.

25.1



vs

2.435 ∗ − 2.434 ∗ = 1.000 ∗104 104 101

2.223 ∗ − 2.222 ∗ = 1.000 ∗108 108 105
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Other issues in the design:
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Other issues in the design:

We have both positive and negative zero

27.1



Other issues in the design:

We have both positive and negative zero
Zero doesn't have unique representation

27.2



There are 19 different ways to represent 0:
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There are 19 different ways to represent 0:

0.000

0.000

…

0.000

0.000

∗ 10−9

∗ 10−8

∗ 108

∗ 109

28.1



And the same goes for -0.
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And the same goes for -0.

We could use them for e.g. infinity or various errors.

29.1



Decimal floats exhibit the same weirdness as binary:
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Decimal floats exhibit the same weirdness as binary:

∗ 9 ≠ 11
9

30.1



Decimal floats exhibit the same weirdness as binary:

∗ 9 ≠ 11
9

10 000 + 4 = 10 000
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Decimal floats exhibit the same weirdness as binary:

∗ 9 ≠ 11
9

10 000 + 4 = 10 000

10 000 + 4 + 4 ≠ 4 + 4 + 10 000

30.3



Why ?10 000 + 4 = 10 000
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Why ?10 000 + 4 = 10 000

, or 10 000 + 4 = 10 004 1.0004 ∗ 104
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Why ?10 000 + 4 = 10 000

, or 10 000 + 4 = 10 004 1.0004 ∗ 104

But we can only use 3 digits after decimal point …
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Why ?10 000 + 4 = 10 000

, or 10 000 + 4 = 10 004 1.0004 ∗ 104

But we can only use 3 digits after decimal point …

… and  is closer to  than to .10 004 10 000 10 010

31.3



Why ?∗ 9 ≠ 11
9
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Why ?∗ 9 ≠ 11
9

= 0.1
9 1¯̄̄
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Why ?∗ 9 ≠ 11
9

= 0.1
9 1¯̄̄

 → 0.1¯̄̄ 1.111 ∗ 10−1
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Why ?∗ 9 ≠ 11
9

= 0.1
9 1¯̄̄

 → 0.1¯̄̄ 1.111 ∗ 10−1

1.111 ∗ ∗ 9 = 9.999 ∗10−1 10−1

32.3



Why ?∗ 9 ≠ 11
9

= 0.1
9 1¯̄̄

 → 0.1¯̄̄ 1.111 ∗ 10−1

1.111 ∗ ∗ 9 = 9.999 ∗10−1 10−1

9.999 ∗ ≠ 1.000 ∗10−1 100

32.4



Why ?10 000 + 4 + 4 ≠ 4 + 4 + 10 000
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Why ?10 000 + 4 + 4 ≠ 4 + 4 + 10 000

Summation is done left-to-right.
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Why ?10 000 + 4 + 4 ≠ 4 + 4 + 10 000

Summation is done left-to-right.

10 000 + 4 + 4 ≠ 4 + 4 + 10 000
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Why ?10 000 + 4 + 4 ≠ 4 + 4 + 10 000

Summation is done left-to-right.

10 000 + 4 + 4 ≠ 4 + 4 + 10 000

10 000 + 4 ≠ 8 + 10 000
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Why ?10 000 + 4 + 4 ≠ 4 + 4 + 10 000

Summation is done left-to-right.

10 000 + 4 + 4 ≠ 4 + 4 + 10 000

10 000 + 4 ≠ 8 + 10 000

10 000 ≠ 10 010

33.4



RECAP
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RECAP
Float addition and multiplication is not associative.

34.1



RECAP
Float addition and multiplication is not associative.

Floats will behave weirdly unintuitively in any base.
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RECAP
Float addition and multiplication is not associative.

Floats will behave weirdly unintuitively in any base.

It is the result of using fixed size representation for .R

34.3



BINARY FLOATS

35



Uses base-2 in representation.

Field 32 bit float 64 bit float

sign 1 1

mantissa 23 52

exponent 8 11
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size min positive value max positive value

32 bits

64 bits

1 ∗ 10−45 3.4 ∗ 1038

5 ∗ 10−324 1.8 ∗ 10308
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IEEE 754 guarantees the results of basic operations
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IEEE 754 guarantees the results of basic operations

addition

38.1



IEEE 754 guarantees the results of basic operations

addition
subtraction
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IEEE 754 guarantees the results of basic operations

addition
subtraction
multiplication
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IEEE 754 guarantees the results of basic operations

addition
subtraction
multiplication
division

38.4



If you take the same numbers and add them on
different platforms, you
will get the same result.
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This is different from getting useful result!
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20 000 000 + 1 + 1 ≠ 1 + 1 + 20 000 000
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20 000 000 + 1 + 1 ≠ 1 + 1 + 20 000 000

How can we fix this?

41.1



The naive option: sum smaller numbers first.
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The naive option: sum smaller numbers first.

The advanced option: Kahan summation algorithm.

42.1



Kahan summation isn't a cure-all.
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Kahan summation isn't a cure-all.

1 + + 1 − = 010100 10100
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Kahan summation isn't a cure-all.

1 + + 1 − = 010100 10100

Other options are available, but they are
computationally even more
expensive.

43.2



What about multiplication?

44



Try to normalize your numbers to be around 1 before
multiplication. Then
denormalize them back.
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Try to normalize your numbers to be around 1 before
multiplication. Then
denormalize them back.

You can also look for alternative formulations.

45.1



IEEE 754 does not provide guarantees on
transcendental functions,
such sine or logarithm.
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Some implementations of performant CR (Correctly
Rounded) math libraries
exist, you can use them.
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RECAP
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RECAP
Basic math operations should be reproducible.

48.1



RECAP
Basic math operations should be reproducible.
Numerical error can be reduced using the right
approach.
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RECAP
Basic math operations should be reproducible.
Numerical error can be reduced using the right
approach.
The simplest approach is to use wider float.
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RECAP
Basic math operations should be reproducible.
Numerical error can be reduced using the right
approach.
The simplest approach is to use wider float.
Transcendentals are hard.

48.4



COMPARING FLOATS
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There are 5 ways to compare 2 floats:
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There are 5 ways to compare 2 floats:

bitwise comparison

50.1



There are 5 ways to compare 2 floats:

bitwise comparison
direct ("exact") comparison
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There are 5 ways to compare 2 floats:

bitwise comparison
direct ("exact") comparison
absolute margin comparison
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There are 5 ways to compare 2 floats:

bitwise comparison
direct ("exact") comparison
absolute margin comparison
relative epsilon comparison
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There are 5 ways to compare 2 floats:

bitwise comparison
direct ("exact") comparison
absolute margin comparison
relative epsilon comparison
ULP based comparison

50.5



BITWISE COMPARISON
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BITWISE COMPARISON

Two floats are equal if their bit representation is same.
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BITWISE COMPARISON

Two floats are equal if their bit representation is same.

This is different from writing a == b in your code

51.2



Under bitwise comparison:
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Under bitwise comparison:

−0 ≠ 0

52.1



Under bitwise comparison:

−0 ≠ 0
NaN = NaN
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Under bitwise comparison:

−0 ≠ 0
NaN = NaN
NaN ≠ NaN

52.3



DIRECT COMPARISON
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DIRECT COMPARISON

a == b

53.1



Under direct comparison:
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Under direct comparison:

−0 = 0

54.1



Under direct comparison:

−0 = 0
NaN ≠ NaN

54.2



Direct comparison is useful e.g. if two different
implementations should
give the same result.
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Direct comparison is useful e.g. if two different
implementations should
give the same result.

More often it is used as a mistake.
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ABSOLUTE MARGIN COMPARISON
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ABSOLUTE MARGIN COMPARISON

|lhs − rhs| ≤ margin

56.1



Two numbers are equal if their difference is less than
some fixed margin.
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PROS/CONS
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PROS/CONS

easy to reason about decimally

58.1



PROS/CONS

easy to reason about decimally
does not break down around 0

58.2



PROS/CONS

easy to reason about decimally
does not break down around 0
same as direct comparison for large numbers

58.3



Fun fact, these two are not equivalent for floats:
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Fun fact, these two are not equivalent for floats:

|lhs − rhs| ≤ margin

59.1



Fun fact, these two are not equivalent for floats:

|lhs − rhs| ≤ margin

lhs + margin ≥ rhs ∧ rhs + margin ≥ lhs

59.2



RELATIVE MARGIN COMPARISON
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RELATIVE MARGIN COMPARISON

|lhs − rhs| ≤ ϵ ∗ max(|lhs|, |rhs|)
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RELATIVE MARGIN COMPARISON

|lhs − rhs| ≤ ϵ ∗ max(|lhs|, |rhs|)

|lhs − rhs| ≤ ϵ ∗ min(|lhs|, |rhs|)

60.2



Two numbers are equal if their difference is within
some factor of each
other.
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PROS/CONS
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PROS/CONS

easy to reason about decimally
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PROS/CONS

easy to reason about decimally
does not break down for large numbers
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PROS/CONS

easy to reason about decimally
does not break down for large numbers
breaks down around 0

62.3



"UNITS IN LAST PLACE" (ULP) BASED
COMPARISON

63



ULP distance of two numbers is how many "steps"
need to be taken from
one to another.
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ULP distance of two numbers is how many "steps"
need to be taken from
one to another.

A step is going between two representable numbers.

64.1



ulpDistance(2.400 ∗ , 2.400 ∗ ) = 0104 104
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ulpDistance(2.400 ∗ , 2.400 ∗ ) = 0104 104

ulpDistance(2.400 ∗ , 2.401 ∗ ) = 1104 104

65.1



ulpDistance(2.400 ∗ , 2.400 ∗ ) = 0104 104

ulpDistance(2.400 ∗ , 2.401 ∗ ) = 1104 104

ulpDistance(2.400 ∗ , 2.500 ∗ ) = 100104 104

65.2



ulpDistance(−0.000 ∗ , 0.000 ∗ ) = ?100 100
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Two numbers are equal if their ULP distance is less
than some fixed number.
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PROS/CONS

68



PROS/CONS

handles both 0 and large numbers gracefully

68.1



PROS/CONS

handles both 0 and large numbers gracefully
easy to reason about numerically
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PROS/CONS

handles both 0 and large numbers gracefully
easy to reason about numerically
very hard to reason about decimally

68.3



RECAP
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RECAP
There is no universal approach to comparing floats.

69.1



RECAP
There is no universal approach to comparing floats.
Direct comparison is most often a mistake, but not
always.
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RECAP
There is no universal approach to comparing floats.
Direct comparison is most often a mistake, but not
always.
You need to understand how your tools compute
ULP distance.

69.3



WHAT ABOUT CATCH2?
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APPROX
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APPROX
REQUIRE( Pi == Approx(3.14) );

71.1



APPROX
REQUIRE( Pi == Approx(3.14) );

Supports absolute margin comparison

71.2



APPROX
REQUIRE( Pi == Approx(3.14) );

Supports absolute margin comparison
Supports relative margin comparison*
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APPROX
REQUIRE( Pi == Approx(3.14) );

Supports absolute margin comparison
Supports relative margin comparison*
LEGACY

71.4



MATCHERS
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MATCHERS
REQUIRE_THAT( Pi, WithinRel(3.14) );

72.1



MATCHERS
REQUIRE_THAT( Pi, WithinRel(3.14) );

WithinAbs — absolute margin comparison
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MATCHERS
REQUIRE_THAT( Pi, WithinRel(3.14) );

WithinAbs — absolute margin comparison
WithinRel — relative margin comparison
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MATCHERS
REQUIRE_THAT( Pi, WithinRel(3.14) );

WithinAbs — absolute margin comparison
WithinRel — relative margin comparison
WithinULP — ULP based comparison

72.4



CATCH2 ULPS
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CATCH2 ULPS

ulpDistance(−0, 0)

ulpDistance(DBL_MAX, ∞)

ulpDistance(NaN, X)

= 0

= 1

= ∞

73.1



LIMITATIONS
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Non IEEE-754 platforms are an obvious issue,
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Non IEEE-754 platforms are an obvious issue,

e.g. IBM defaults to a different model for floats

75.1



But some IEEE-754 platforms can cause issues too,
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But some IEEE-754 platforms can cause issues too,

e.g. Intel's old FPU defaults to 80-bit computations.

76.1



Some languages treat floats differently at compile time
and runtime.
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Some languages treat floats differently at compile time
and runtime.

e.g. Go or C++

77.1



Go does its own thing for constants
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Go does its own thing for constants
package main


import "fmt"


func main() {

    a := -0.0

    fmt.Println(a, 1/a)

}
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Go does its own thing for constants
package main


import "fmt"


func main() {

    a := -0.0

    fmt.Println(a, 1/a)

}

0 +Inf

78.2



C++ does not handle some edge cases well
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C++ does not handle some edge cases well
#include <fmt/core.h>


int main() {

    double neg_zero = -0.0;

    double neg_infinity = 1 / neg_zero;


    fmt::print("{} {}\n", neg_zero, neg_infinity);

}

79.1



C++ does not handle some edge cases well
#include <fmt/core.h>


int main() {

    double neg_zero = -0.0;

    double neg_infinity = 1 / neg_zero;


    fmt::print("{} {}\n", neg_zero, neg_infinity);

}

-0 -inf

79.2



C++ does not handle some edge cases well
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C++ does not handle some edge cases well
#include <fmt/core.h>


int main() {

    constexpr double neg_zero = -0.0;

    constexpr double neg_infinity = 1 / neg_zero;


    fmt::print("{} {}\n", neg_zero, neg_infinity);

}

80.1



C++ does not handle some edge cases well
#include <fmt/core.h>


int main() {

    constexpr double neg_zero = -0.0;

    constexpr double neg_infinity = 1 / neg_zero;


    fmt::print("{} {}\n", neg_zero, neg_infinity);

}

error: '(1.0e+0 / -0.0)' is not a constant expression

   15 |     constexpr double neg_infinity = 1 / neg_zero;

      |

80.2



There are compiler flags that break IEEE standard

81



There are compiler flags that break IEEE standard

-ffast-math (/fp:fast)
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There are compiler flags that break IEEE standard

-ffast-math (/fp:fast)
-Ofast

81.2



There are compiler flags that break IEEE standard

-ffast-math (/fp:fast)
-Ofast
-funsafe-math-optimizations
-ffinite-math-only
…

81.3



External code can also break reproducibility
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External code can also break reproducibility
int evil() {

    fesetround(FE_DOWNWARD);


    // never resets original rounding mode

}

82.1



RECAP
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RECAP
You have to know what your language guarantees

83.1



RECAP
You have to know what your language guarantees
Compiler flags can break IEEE 754 guarantees
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RECAP
You have to know what your language guarantees
Compiler flags can break IEEE 754 guarantees
External code can break reproducibility as well
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THE END
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You can't constant fold  into 




x + 0.0 x
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You can't constant fold  into 




x + 0.0 x

You can't constant fold  into x ∗ 0.0 0.0
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You can't constant fold  into 




x + 0.0 x

You can't constant fold  into x ∗ 0.0 0.0

QUESTIONS?

85.2


