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ABOUT THIS TALKABOUT THIS TALK
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This talk is about solving real world problems using
SAT solvers.
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SAT solvers will be used as a black box and we will not
cover any of the theory behind them.

This talk is about solving real world problems using
SAT solvers.
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We will start by going over the boolean satisfaction
(SAT) problem.
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We will start by going over the boolean satisfaction
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Then we will learn how to drive a SAT solver from C++.
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We will start by going over the boolean satisfaction
(SAT) problem.

Then we will learn how to drive a SAT solver from C++.

Then we will apply our newly gained knowledge to two
practical examples, Sudoku and Master Key Systems.
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INTRODUCTION TO SATINTRODUCTION TO SAT
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The boolean satisfaction problem (SAT) is about
checking whether a logical formula is satisfiable.

3 . 2



A formula is satisfiable if we can assign values to its
variables so that the whole formula is true.

The boolean satisfaction problem (SAT) is about
checking whether a logical formula is satisfiable.
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if (A || B || (!A && !C)) { 
    create_new_widget(); 
} else { 
    reuse_old_widget(); 
}
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if (A || B || (!A && !C))

if (A || B || (!A && !C)) { 
    create_new_widget(); 
} else { 
    reuse_old_widget(); 
}

A ∨ B ∨ (¬A ∧ ¬C)
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Negation, also known as NOT [!A]

Disjunction, also known as OR [A || B]
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LOGICAL OPERATORSLOGICAL OPERATORS

Negation, also known as NOT [!A]

Disjunction, also known as OR [A || B]

Conjunction, also known as AND [A && B]

¬α

α ∨ β

α ∧ β
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IMPLICATIONIMPLICATION

α ⟹ β
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IMPLICATIONIMPLICATION

1 1 1

1 0 0

0 1 1

0 0 1

α ⟹ β

α β α ⟹ β
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EQUIVALENCEEQUIVALENCE
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EQUIVALENCEEQUIVALENCE

α ⟺ β
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EQUIVALENCEEQUIVALENCE

1 1 1

1 0 0

0 1 0

0 0 1

α ⟺ β

α β α ⟺ β
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All the practical examples in this talk can be
formulated using just these logical operators.
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All the practical examples in this talk can be
formulated using just these logical operators.

There is a small problem; SAT solvers do not accept
arbitrary logical formulae.

They only accept logical formulae in the Conjunctive
Normal Form (CNF).
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Conjunctive Normal Form (CNF) means that the
formula is a conjunction of disjunctive clauses.

3 . 8



Conjunctive Normal Form (CNF) means that the
formula is a conjunction of disjunctive clauses.

In other words, the formula is an AND of many ORs.
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A ∨ B ∨ (¬A ∧ ¬C)
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How do we convert this to CNF?

A ∨ B ∨ (¬A ∧ ¬C)
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CONVERSIONSCONVERSIONS
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CONVERSIONSCONVERSIONS

Every formula can be converted into an equivalent CNF
formula.
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CONVERSIONSCONVERSIONS

Every formula can be converted into an equivalent CNF
formula.

It helps if you know De Morgan's laws, distributive laws
and some simple identities.
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Original clause Equivalent clause

¬¬α α

¬(α ∧ β) ¬α ∨ ¬β

¬(α ∨ β) ¬α ∧ ¬β

(α ∧ β) ∨ γ (α ∨ γ) ∧ (β ∨ γ)

(α ∨ β) ∧ γ (α ∧ γ) ∨ (β ∧ γ)

α ⟹ β ¬α ∨ β

α ⟺ β (α ⟹ β) ∧ (α ⟸ β)
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A ∨ B ∨ (¬A ∧ ¬C)
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A ∨ B ∨ (¬A ∧ ¬C)

γ ∨ (α ∧ β)
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A ∨ B ∨ (¬A ∧ ¬C)

γ ∨ (α ∧ β)

(γ ∨ α) ∧ (γ ∨ β)
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A ∨ B ∨ (¬A ∧ ¬C)

γ ∨ (α ∧ β)

(γ ∨ α) ∧ (γ ∨ β)

(A ∨ B ∨ ¬A) ∧ (A ∨ B ∨ ¬C)
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A ∨ B ∨ (¬A ∧ ¬C)

γ ∨ (α ∧ β)

(γ ∨ α) ∧ (γ ∨ β)

(A ∨ B ∨ ¬A) ∧ (A ∨ B ∨ ¬C)

(A ∨ B ∨ ¬C)
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That's all we need to know about (CNF-)SAT.
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At least for now.

That's all we need to know about (CNF-)SAT.

3 . 13



HOW TO DRIVE SAT SOLVER FROM C++HOW TO DRIVE SAT SOLVER FROM C++
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We will be using MiniSat's C++ interface.
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We will be using MiniSat's C++ interface.

There is a CMake-integrated fork at
https://github.com/master-keying/minisat
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We will be using MiniSat's C++ interface.

There is a CMake-integrated fork at

It is also in vcpkg as "minisat-master-keying".

https://github.com/master-keying/minisat

4 . 2

https://github.com/master-keying/minisat


MiniSat's interface is based around 4 basic types,
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MiniSat's interface is based around 4 basic types,

Solver - The solver itself
Vec - A relocating implementation of std::vector

and 2 vocabulary types

Var - The representation of a logic variable
Lit - The concrete literal of a variable in a clause
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(A ∨ B ∨ ¬A) ∧ (A ∨ B ∨ ¬C)
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3 variables, , , and 

(A ∨ B ∨ ¬A) ∧ (A ∨ B ∨ ¬C)

A B C
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3 variables, , , and 

4 literals, , , , and .

(A ∨ B ∨ ¬A) ∧ (A ∨ B ∨ ¬C)

A B C

A B ¬A ¬C
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Let's solve the formula 
(A ∨ B ∨ ¬A) ∧ (A ∨ B ∨ ¬C)
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Let's solve the formula 
(A ∨ B ∨ ¬A) ∧ (A ∨ B ∨ ¬C)

#include <minisat/core/Solver.h>
#include <iostream> 
 
int main() { 
    using Minisat::mkLit; using Minisat::lbool; 
 
    Minisat::Solver solver; 
 
    auto A = solver.newVar(); 
    auto B = solver.newVar(); 
    auto C = solver.newVar(); 
 
    solver.addClause( mkLit(A),  mkLit(B),  ~mkLit(A)); 
    solver.addClause( mkLit(A),  mkLit(B),  ~mkLit(C));

4 . 5



... and then retrieve the results

4 . 6



... and then retrieve the results
    auto sat = solver.solve(); 
    if (sat) { 
        std::cout << "SAT\n" 
            << "Model found:\n" 
            << "A := " << (solver.modelValue(A) == l_True) << 
            << "B := " << (solver.modelValue(B) == l_True) << 
            << "C := " << (solver.modelValue(C) == l_True) << 
    } else { 
        std::cout << "UNSAT\n"; 
        return 1; 
    } 
}
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So what solution did Minisat find?
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So what solution did Minisat find?
$ ./example-1 
SAT 
Model found: 
A := 0 
B := 0 
C := 0
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Now we know enough to make a Sudoku solver.
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HOW TO CONVERT SUDOKU TO SATHOW TO CONVERT SUDOKU TO SAT
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Sudoku is a puzzle where you put numbers 1-9 onto a
9x9 grid, split into 9 3x3 boxes
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Some of the numbers are prefilled and we have to fill
in the rest, following some simple rules:
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Some of the numbers are prefilled and we have to fill
in the rest, following some simple rules:

1. Each row contains all of
the numbers 1-9

2. Each column contains all of
the numbers 1-9

3. Each 3x3 box contains all
of the numbers 1-9
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When translating these rules into SAT, we have to start
by defining the variables.
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When translating these rules into SAT, we have to start
by defining the variables.
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position a variable that can have values 1-9.
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When translating these rules into SAT, we have to start
by defining the variables.

The natural thing to do would be to assign each
position a variable that can have values 1-9.

In SAT, variable can have 2 values, "true", or "false".
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The solution is to have a variable per each position
and each possible value.
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The solution is to have a variable per each position
and each possible value.

Let's denote these variables as xvr,c

5 . 5



The solution is to have a variable per each position
and each possible value.

Let's denote these variables as 

If the variable  is set to true, the -th row and -th
column contains number .

xvr,c

xvr,c r c
v
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1. EACH ROW CONTAINS ALL OF THE NUMBERS 1-91. EACH ROW CONTAINS ALL OF THE NUMBERS 1-9
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1. EACH ROW CONTAINS ALL OF THE NUMBERS 1-91. EACH ROW CONTAINS ALL OF THE NUMBERS 1-9

∀(r, v) ∈ (rows × values) : ∨ ∨ … ∨xvr,1 xvr,2 xvr,9

∀(r, v) ∈ (rows × values) : ⋁
i=1

9

xvr,i
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2. EACH COL CONTAINS ALL OF THE NUMBERS 1-92. EACH COL CONTAINS ALL OF THE NUMBERS 1-9
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2. EACH COL CONTAINS ALL OF THE NUMBERS 1-92. EACH COL CONTAINS ALL OF THE NUMBERS 1-9

∀(c, v) ∈ (columns × values) : ∨ ∨ … ∨xv1,c xv2,c x

∀(c, v) ∈ (columns × values) : ⋁
i=1

9

xvi,c
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3. EACH BOX CONTAINS ALL OF THE NUMBERS 1-93. EACH BOX CONTAINS ALL OF THE NUMBERS 1-9
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3. EACH BOX CONTAINS ALL OF THE NUMBERS 1-93. EACH BOX CONTAINS ALL OF THE NUMBERS 1-9

∀(b, v) ∈ (boxes × values) : ∨ ∨ …xvb ,br1 c1
xvb ,br1 c2

∀(b, v) ∈ (boxes × values) : ⋁
(r,c)∈b

xvr,c
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We expressed the Sudoku rules as a set of clauses.
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But an important set of clauses is missing.

We expressed the Sudoku rules as a set of clauses.
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As humans, we assume that each position can contain
only a single number.

5 . 11



As humans, we assume that each position can contain
only a single number.

This assumption was lost when we split each position
into multiple different variables.
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As humans, we assume that each position can contain
only a single number.

This assumption was lost when we split each position
into multiple different variables.

We need to add it back.
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4. EACH POSITION CONTAINS EXACTLY ONE NUMBER4. EACH POSITION CONTAINS EXACTLY ONE NUMBER
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4. EACH POSITION CONTAINS EXACTLY ONE NUMBER4. EACH POSITION CONTAINS EXACTLY ONE NUMBER

The  helper adds a set of clauses that
allows only one of the literals to be true.

Let's take a look at how it works.

∀(r, c) ∈ (rows × columns) : exactly-one( , …x1
r,c

exactly-one
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We cannot directly limit the number of true literals.
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We cannot directly limit the number of true literals.

But we can place lower and upper limits on them.
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We cannot directly limit the number of true literals.

But we can place lower and upper limits on them.

In other words, exactly one literal is true when at least
one is true and at most one is true.
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Making at least one literal true is simple:
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Making at least one literal true is simple:

lit⋁
lit∈literals
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Forcing at most one literal to be true is based on a
simple observation
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Forcing at most one literal to be true is based on a
simple observation

At most one literal is true when there is no pair of
literals where both literals are true at the same time.

5 . 15



Forcing at most one literal to be true is based on a
simple observation

At most one literal is true when there is no pair of
literals where both literals are true at the same time.

∀ ∈ literalsl1
∈ literalsl2

≠l1 l2

,

,

: ¬ ( ∧ )l1 l2
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Let's write us a C++ Sudoku solver.
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Let's write us a C++ Sudoku solver.

All the code in this section can be found at
https://github.com/horenmar/sudoku-example
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First we need to figure out addressing variables.
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First we need to figure out addressing variables.

SAT solvers see variables as integers in range 0..N.

Luckily, we can easily map  into an integer as 
r * 9 * 9 + c * 9 + v

xvr,c

Minisat::Var toVar(int row, int column, int value) { 
    return row * columns * values + column * values + value; 
}

5 . 17



Before we can start adding clauses, we need to
allocate all variables
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Before we can start adding clauses, we need to
allocate all variables

void Solver::init_variables() { 
    for (int r = 0; r < rows; ++r) { 
        for (int c = 0; c < columns; ++c) { 
            for (int v = 0; v < values; ++v) { 
                static_cast<void>(solver.newVar()); 
            } 
        } 
    } 
}
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1. EACH ROW CONTAINS ALL OF THE NUMBERS 1-91. EACH ROW CONTAINS ALL OF THE NUMBERS 1-9
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1. EACH ROW CONTAINS ALL OF THE NUMBERS 1-91. EACH ROW CONTAINS ALL OF THE NUMBERS 1-9
for (int row = 0; row < rows; ++row) { 
     
         
        

 
         
    
}
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1. EACH ROW CONTAINS ALL OF THE NUMBERS 1-91. EACH ROW CONTAINS ALL OF THE NUMBERS 1-9
for (int row = 0; row < rows; ++row) { 
    for (int value = 0; value < values; ++value) { 
         
        

 
         
    }
}
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1. EACH ROW CONTAINS ALL OF THE NUMBERS 1-91. EACH ROW CONTAINS ALL OF THE NUMBERS 1-9
for (int row = 0; row < rows; ++row) { 
    for (int value = 0; value < values; ++value) { 
        Minisat::vec<Minisat::Lit> literals; 
        

 
         
    }
}
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1. EACH ROW CONTAINS ALL OF THE NUMBERS 1-91. EACH ROW CONTAINS ALL OF THE NUMBERS 1-9
for (int row = 0; row < rows; ++row) { 
    for (int value = 0; value < values; ++value) { 
        Minisat::vec<Minisat::Lit> literals; 
        for (int col = 0; col < columns; ++col) { 
            literals.push(Minisat::mkLit(toVar(row, col, value
        } 
         
    }
}
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1. EACH ROW CONTAINS ALL OF THE NUMBERS 1-91. EACH ROW CONTAINS ALL OF THE NUMBERS 1-9
for (int row = 0; row < rows; ++row) { 
    for (int value = 0; value < values; ++value) { 
        Minisat::vec<Minisat::Lit> literals; 
        for (int col = 0; col < columns; ++col) { 
            literals.push(Minisat::mkLit(toVar(row, col, value
        } 
        solver.addClause(literals); 
    }
}
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2. EACH COL CONTAINS ALL OF THE NUMBERS 1-92. EACH COL CONTAINS ALL OF THE NUMBERS 1-9
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2. EACH COL CONTAINS ALL OF THE NUMBERS 1-92. EACH COL CONTAINS ALL OF THE NUMBERS 1-9
for (int col = 0; col < columns; ++col) { 
    for (int value = 0; value < values; ++value) { 
        Minisat::vec<Minisat::Lit> literals; 
        for (int row = 0; row < rows; ++row) { 
            literals.push(Minisat::mkLit(toVar(row, col, value
        } 
        solver.addClause(literals); 
    } 
}
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3. EACH BOX CONTAINS ALL OF THE NUMBERS 1-93. EACH BOX CONTAINS ALL OF THE NUMBERS 1-9
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3. EACH BOX CONTAINS ALL OF THE NUMBERS 1-93. EACH BOX CONTAINS ALL OF THE NUMBERS 1-9
for (int value = 0; value < values; ++value) { 
    for (int r : {0, 3, 6}) { 
        for (int c : {0, 3, 6}) { 
            Minisat::vec<Minisat::Lit> literals; 
            for (int rr : {0, 1, 2}) { 
                for (int cc : {0, 1, 2}) { 
                    literals.push(Minisat::mkLit( 
                        toVar(r + rr, c + cc, value) 
                    )); 
                } 
            } 
            solver.addClause(literals); 
        } 
    } 
} 
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4. EACH POSITION CONTAINS EXACTLY ONE NUMBER4. EACH POSITION CONTAINS EXACTLY ONE NUMBER
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4. EACH POSITION CONTAINS EXACTLY ONE NUMBER4. EACH POSITION CONTAINS EXACTLY ONE NUMBER
for (int row = 0; row < rows; ++row) { 
    for (int col = 0; col < columns; ++col) { 
        Minisat::vec<Minisat::Lit> literals; 
        for (int value = 0; value < values; ++value) { 
            literals.push(Minisat::mkLit(toVar(row, col, value
        } 
        exactly_one(literals); 
    } 
}
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void Solver::exactly_one(Minisat::vec<Minisat::Lit> const& lit
    // At least one 
    solver.addClause(lits); 
 
    // At most one 
    for (size_t i = 0; i < lits.size(); ++i) { 
        for (size_t j = i + 1; j < lits.size(); ++j) { 
            solver.addClause(~lits[i], ~lits[j]); 
        } 
    } 
}
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We have a model of Sudoku as a SAT instance.
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We have a model of Sudoku as a SAT instance.

Now we need to insert an actual instance of the puzzle,
and then extract the solution.
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Inserting an instance is easy enough, each prefiled
square gets an unary clause:
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Inserting an instance is easy enough, each prefiled
square gets an unary clause:

bool Solver::apply_board(board const& b) { 
    for (int row = 0; row < rows; ++row) { 
        for (int col = 0; col < columns; ++col) { 
            auto value = b[row][col]; 
            if (value != 0) { 
                solver.addClause( 
                    Minisat::mkLit(toVar(row, col, value - 1))
                ); 
            } 
        } 
    } 
    return ret; 
}
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Extracting a solution is similarly simple, we just need
to check which variable for a given square is "true".
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Extracting a solution is similarly simple, we just need
to check which variable for a given square is "true".
board Solver::get_solution() const { 
   board b(rows, std::vector<int>(columns)); 
   for (int row = 0; row < rows; ++row) { 
      for (int col = 0; col < columns; ++col) { 
         for (int val = 0; val < values; ++val) { 
            if (solver.modelValue(toVar(row, col, val)).isTrue
               b[row][col] = val + 1; 
               break; 
            } 
         } 
     } 
   } 
   return b; 
}
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Let's take a look at how our solver performs.
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Let's take a look at how our solver performs.

All benchmarks were run on the same machine, and
the binaries were compiled with g++ under WSL.
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Let's take a look at how our solver performs.

All benchmarks were run on the same machine, and
the binaries were compiled with g++ under WSL.

The inputs were 95 "hard" instances of Sudoku.
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Runtimes of different solvers [ms]
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Counterintuitively, giving a SAT solver less clauses
and/or variables can slow it down.
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Counterintuitively, giving a SAT solver less clauses
and/or variables can slow it down.

Let's see what happens when we encode the sudoku
rules differently, and give the solver more information.
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1. Each row contains each of the numbers 1-9 
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1. Each row contains each of the numbers 1-9 
exactly once
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1. Each row contains each of the numbers 1-9 
exactly once

2. Each column contains each of the numbers 1-9
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1. Each row contains each of the numbers 1-9 
exactly once

2. Each column contains each of the numbers 1-9
exactly once
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1. Each row contains each of the numbers 1-9 
exactly once

2. Each column contains each of the numbers 1-9
exactly once

3. Each 3x3 box contains each of the numbers 1-9
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1. Each row contains each of the numbers 1-9 
exactly once

2. Each column contains each of the numbers 1-9
exactly once

3. Each 3x3 box contains each of the numbers 1-9
exactly once
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for (int row = 0; row < rows; ++row) { 
    for (int value = 0; value < values; ++value) { 
        Minisat::vec<Minisat::Lit> literals; 
        for (int col = 0; col < columns; ++col) { 
            literals.push(Minisat::mkLit(toVar(row, col, value
        } 
        solver.addClause(literals); 
         
    } 
} 
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for (int row = 0; row < rows; ++row) { 
    for (int value = 0; value < values; ++value) { 
        Minisat::vec<Minisat::Lit> literals; 
        for (int col = 0; col < columns; ++col) { 
            literals.push(Minisat::mkLit(toVar(row, col, value
        } 
        solver.addClause(literals); 
        exactly_one(literals); 
    } 
} 
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Runtimes of different solvers [ms]
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RECAPRECAP
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5 . 33



RECAPRECAP
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More clauses does not mean worse performance.

But it does not mean better performance either.
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RECAPRECAP

Be careful to encode all of your assumptions.

More clauses does not mean worse performance.

But it does not mean better performance either.

Experiment with different encodings.
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HOW TO SOLVE A MASTER KEY SYSTEMHOW TO SOLVE A MASTER KEY SYSTEM
WITH A SAT SOLVERWITH A SAT SOLVER
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Master Key System (MKS) is a set of keys and locks
where a key can open more than one lock.
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Master Key System (MKS) is a set of keys and locks
where a key can open more than one lock.

The relations between keys and locks can be arbitrarily
complex, and are described in a lockchart.
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The common depiction of a lockchart is a simple table:
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Each MKS has a geometry associated with it.
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Each MKS has a geometry associated with it.

The geometry describes the positions, their depths,
and the constraints the keys must satisfy.
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Let's take a look at the geometry and inner working of
a pin tumbler lock.
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THE RULESTHE RULES

1. A key has exactly one cutting depth at a position
2. A lock has at least one cutting depth at a position
3. A key must open all locks that the lock-chart

specifies it should open
4. A key must be blocked in all locks that the lock-chart

specifies it should not open
5. A key's cutting must satisfy all constraints
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THE VARIABLESTHE VARIABLES

This time we will be using multiple kinds of variables.
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THE VARIABLESTHE VARIABLES

This time we will be using multiple kinds of variables.

, which is true when key  is cut at depth  in
position 

keykp,d k d

p
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THE VARIABLESTHE VARIABLES

This time we will be using multiple kinds of variables.

, which is true when key  is cut at depth  in
position 

, which is true when lock  is cut at depth  in
position 

keykp,d k d

p

locklp,d l d

p
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1. A KEY HAS EXACTLY ONE CUTTING DEPTH AT A1. A KEY HAS EXACTLY ONE CUTTING DEPTH AT A
POSITIONPOSITION
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1. A KEY HAS EXACTLY ONE CUTTING DEPTH AT A1. A KEY HAS EXACTLY ONE CUTTING DEPTH AT A
POSITIONPOSITION

∀(k, p) ∈(keys × positions) :

exactly-one(ke , ke , … , ke )ykp,0 ykp,1 ykp,d
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2. A LOCK MUST HAVE AT LEAST ONE CUTTING DEPTH2. A LOCK MUST HAVE AT LEAST ONE CUTTING DEPTH
SELECTED FOR EACH POSITIONSELECTED FOR EACH POSITION
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2. A LOCK MUST HAVE AT LEAST ONE CUTTING DEPTH2. A LOCK MUST HAVE AT LEAST ONE CUTTING DEPTH
SELECTED FOR EACH POSITIONSELECTED FOR EACH POSITION

∀(l, p) ∈ (locks × positions) : loc⋁
d∈depths(p)

klp,d
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3. A KEY MUST OPEN ALL LOCKS THAT THE LOCK-3. A KEY MUST OPEN ALL LOCKS THAT THE LOCK-
CHART SPECIFIES IT SHOULD OPENCHART SPECIFIES IT SHOULD OPEN
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3. A KEY MUST OPEN ALL LOCKS THAT THE LOCK-3. A KEY MUST OPEN ALL LOCKS THAT THE LOCK-
CHART SPECIFIES IT SHOULD OPENCHART SPECIFIES IT SHOULD OPEN

A key opens a lock when the lock has the same cutting
depths as the key.
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3. A KEY MUST OPEN ALL LOCKS THAT THE LOCK-3. A KEY MUST OPEN ALL LOCKS THAT THE LOCK-
CHART SPECIFIES IT SHOULD OPENCHART SPECIFIES IT SHOULD OPEN

A key opens a lock when the lock has the same cutting
depths as the key.

∀k ∈ keys,

∀l ∈ opened-by(k) : (ke ⟹ loc⋀
p ∈ positions
d ∈ depths(p)

ykp,d k
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4. A KEY MUST BE BLOCKED IN ALL LOCKS THAT THE4. A KEY MUST BE BLOCKED IN ALL LOCKS THAT THE
LOCK-CHART SPECIFIES IT SHOULD NOT OPENLOCK-CHART SPECIFIES IT SHOULD NOT OPEN
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4. A KEY MUST BE BLOCKED IN ALL LOCKS THAT THE4. A KEY MUST BE BLOCKED IN ALL LOCKS THAT THE
LOCK-CHART SPECIFIES IT SHOULD NOT OPENLOCK-CHART SPECIFIES IT SHOULD NOT OPEN

A key is blocked in a lock if, and only if, it does not
open the lock.
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4. A KEY MUST BE BLOCKED IN ALL LOCKS THAT THE4. A KEY MUST BE BLOCKED IN ALL LOCKS THAT THE
LOCK-CHART SPECIFIES IT SHOULD NOT OPENLOCK-CHART SPECIFIES IT SHOULD NOT OPEN

A key is blocked in a lock if, and only if, it does not
open the lock.

A key opens a lock when the lock has the same cutting
depths as the key.
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A key is blocked in a lock when the lock is missing at
least one of key's cutting depths.
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A key is blocked in a lock when the lock is missing at
least one of key's cutting depths.

∀k ∈ keys,

∀l ∈ blocked-in(k) : (ke ∧ ¬ loc⋁
p ∈ positions
d ∈ depths(p)

ykp,d klp,d
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We can convert DNF to CNF using distributive laws.
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We can convert DNF to CNF using distributive laws.

This creates an exponential number of long clauses.
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We can do better.

We can convert DNF to CNF using distributive laws.

This creates an exponential number of long clauses.
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At the start of this talk, we talked about converting
formulae into equivalent formulae in CNF.
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At the start of this talk, we talked about converting
formulae into equivalent formulae in CNF.

It is also possible to create equisatisfiable formulae.

6 . 15



 and  are not equivalent,
but they are equisatisfiable.

α ∨ β (α ∨ ¬γ) ∧ (γ ∨ β)
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We will use trick called Tseytin transformation.
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We will use trick called Tseytin transformation.

The idea is to introduce a new variable to represent
each inner conjunction, and then disjunct those.
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We will use trick called Tseytin transformation.

The idea is to introduce a new variable to represent
each inner conjunction, and then disjunct those.

Let's call this variable  and define it as 

.

block
k,l
p,d

bloc ⟺ (ke ∧ ¬loc )k
k,l
p,d ykp,d klp,d
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bloc ⟺ (ke ∧ ¬loc )k
k,l
p,d ykp,d klp,d
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bloc ⟺ (ke ∧ ¬loc )k
k,l
p,d ykp,d klp,d

α ⟺ β
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bloc ⟺ (ke ∧ ¬loc )k
k,l
p,d ykp,d klp,d

α ⟺ β

(α ⟹ β) ∧ (α ⟸ β)
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bloc ⟺ (ke ∧ ¬loc )k
k,l
p,d ykp,d klp,d

α ⟺ β

(α ⟹ β) ∧ (α ⟸ β)

(¬α ∨ β) ∧ (α ∨ ¬β)
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bloc ⟺ (ke ∧ ¬loc )k
k,l
p,d ykp,d klp,d

α ⟺ β

(α ⟹ β) ∧ (α ⟸ β)

(¬α ∨ β) ∧ (α ∨ ¬β)

(¬bloc ∨ (ke ∧ ¬loc ))k
k,l
p,d ykp,d klp,d

(bloc ∨ ¬(ke ∧ loc ))k
k,l
p,d ykp,d klp,d
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The first clause can be distributed out:
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The first clause can be distributed out:

(¬bloc ∨ (ke ∧ ¬loc ))k
k,l
p,d ykp,d klp,d
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The first clause can be distributed out:

(¬bloc ∨ (ke ∧ ¬loc ))k
k,l
p,d ykp,d klp,d

(¬bloc ∨ ke ) ∧ (¬bloc ∨ ¬loc )k
k,l
p,d ykp,d k

k,l
p,d klp,d
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Second clause is simplified with DeMorgan's laws
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Second clause is simplified with DeMorgan's laws

(bloc ∨ ¬(ke ∧ loc ))k
k,l
p,d ykp,d klp,d
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Second clause is simplified with DeMorgan's laws

(bloc ∨ ¬(ke ∧ loc ))k
k,l
p,d ykp,d klp,d

(bloc ∨ ¬ke ∨ ¬loc )k
k,l
p,d ykp,d klp,d
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With this, the blocking clauses are simple:
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With this, the blocking clauses are simple:

∀k ∈ keys,

∀l ∈ blocked-in(k) : bloc⋁
p ∈ positions
d ∈ depths(p)

k
k,l
p,d
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With this, the blocking clauses are simple:

We now have a model of a MKS without constraints.

∀k ∈ keys,

∀l ∈ blocked-in(k) : bloc⋁
p ∈ positions
d ∈ depths(p)

k
k,l
p,d
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We will explore 2 different constraints:
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We will explore 2 different constraints:

Jump constraint
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We will explore 2 different constraints:

Jump constraint
Key cutting hierarchy constraint
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JUMP CONSTRAINTJUMP CONSTRAINT
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JUMP CONSTRAINTJUMP CONSTRAINT

To manufacture a key, the cutting depths in two
adjacent positions cannot differ by more than .j
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JUMP CONSTRAINTJUMP CONSTRAINT

To manufacture a key, the cutting depths in two
adjacent positions cannot differ by more than .j

∀k ∈ keys,

∀p ∈ positions

∀d ∈ depths(p) : ¬(ke ∧ ke )ykp,d ykp+1,d+j

¬(ke ∧ ke )ykp,d ykp+1,d−j
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KEY CUTTING HIERARCHY CONSTRAINTKEY CUTTING HIERARCHY CONSTRAINT
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KEY CUTTING HIERARCHY CONSTRAINTKEY CUTTING HIERARCHY CONSTRAINT

For all keys , where 
, for all positions 

 and depths  at position , where :

,k1 k2

opened-by( ) ⊂ opened-by( )k2 k1

p ,d1 d2 p <d1 d2
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KEY CUTTING HIERARCHY CONSTRAINTKEY CUTTING HIERARCHY CONSTRAINT

For all keys , where 
, for all positions 

 and depths  at position , where :

,k1 k2

opened-by( ) ⊂ opened-by( )k2 k1

p ,d1 d2 p <d1 d2

ke ⟹ ¬keyk1

p,d1
yk2

p,d2
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C++ IMPLEMENTATIONC++ IMPLEMENTATION
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C++ IMPLEMENTATIONC++ IMPLEMENTATION

A variant of the code is implemented in
https://github.com/horenmar/mks-example
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C++ IMPLEMENTATIONC++ IMPLEMENTATION

A variant of the code is implemented in

We will not go over it in this talk.

https://github.com/horenmar/mks-example
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BENCHMARKSBENCHMARKS
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BENCHMARKSBENCHMARKS

There are none, sorry.
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BENCHMARKSBENCHMARKS

There are none, sorry.

I do have an anecdote though.
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~5 years ago, my university was approached by our
local key manufacturer, FAB.
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~5 years ago, my university was approached by our
local key manufacturer, FAB.

A team spent ~3 years working on a specialized solver.
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~5 years ago, my university was approached by our
local key manufacturer, FAB.

A team spent ~3 years working on a specialized solver.

It could solve ~  of test inputs.80%
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Another researcher had the idea to use SAT solvers.

6 . 28



Another researcher had the idea to use SAT solvers.

In 3 months, his solver could solve ~  of the tests.90%
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Another researcher had the idea to use SAT solvers.

In 3 months, his solver could solve ~  of the tests.

Its later evolution is currently in production.

90%
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RECAPRECAP
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RECAPRECAP
SAT solvers can be used to solve wildly different

problems.
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RECAPRECAP
SAT solvers can be used to solve wildly different

problems.

Writing a SAT-based solver is fast and easy.

SAT-based solvers can perform surprisingly well.

But specialized solvers will end up faster.

7 . 1



You need to be careful to encode your assumptions
when converting a problem to SAT.
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You need to be careful to encode your assumptions
when converting a problem to SAT.

Adding clauses can speed things up, and so can
shortening your clauses.
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You need to be careful to encode your assumptions
when converting a problem to SAT.

Adding clauses can speed things up, and so can
shortening your clauses.

But there are no guarantees.
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Experiment with different encodings of the problem.
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Experiment with different encodings of the problem.

Experiment with different SAT solvers!
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THE END.
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QUESTIONS?QUESTIONS?

https://github.com/horenmar/sudoku-example
https://github.com/horenmar/mks-example
https://github.com/master-keying/minisat
https://codingnest.com/modern-sat-solvers-fast-
neat-and-underused-part-3-of-n/
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