
USING VCPKG IN ANGER

Martin Hořeňovský

1

USING VCPKG IN ANGER

Martin Hořeňovský

2

WHY SHOULD YOU LISTEN
TO ME TALK ABOUT VCPKG?

3

I started moving us to vcpkg ~3 years ago

4

I started moving us to vcpkg ~3 years ago
We use vcpkg for complex scenarios

4.1

I started moving us to vcpkg ~3 years ago
We use vcpkg for complex scenarios

Multiple interdependent packages

4.2

I started moving us to vcpkg ~3 years ago
We use vcpkg for complex scenarios

Multiple interdependent packages
Private packages and vcpkg remote

4.3

I started moving us to vcpkg ~3 years ago
We use vcpkg for complex scenarios

Multiple interdependent packages
Private packages and vcpkg remote
Custom target triplets

4.4

I started moving us to vcpkg ~3 years ago
We use vcpkg for complex scenarios

Multiple interdependent packages
Private packages and vcpkg remote
Custom target triplets
Varied target platforms

4.5

ABOUT THIS TALK

5

WHAT THIS TALK ISN'T

6

WHAT THIS TALK ISN'T
Tutorial for using vcpkg

6.1

WHAT THIS TALK ISN'T
Tutorial for using vcpkg
Advocacy for Conan

6.2

WHAT THIS TALK ISN'T
Tutorial for using vcpkg
Advocacy for Conan
Advocacy against vcpkg

6.3

WHAT THIS TALK ISN'T
Tutorial for using vcpkg
Advocacy for Conan
Advocacy against vcpkg
Advocacy against package managers

6.4

WHAT THIS TALK IS

7

WHAT THIS TALK IS
Sharing experience from 3 years of vcpkg

7.1

WHAT THIS TALK IS
Sharing experience from 3 years of vcpkg
More realistic look at using vcpkg in prod

7.2

WHAT THIS TALK IS
Sharing experience from 3 years of vcpkg
More realistic look at using vcpkg in prod
Venting

7.3

USING VCPKG: QUICK TIPS

8

manifest mode or classic mode?

9

manifest mode or classic mode?

Always use vcpkg in manifest mode

9.1

Always specify version baseline

10

no-baseline$ ls
CMakeLists.txt vcpkg.json

no-baseline$ cat CMakeLists.txt
cmake_minimum_required(VERSION 3.20)
project(no-baseline LANGUAGES CXX)

no-baseline$ cat vcpkg.json
{
 "$schema": "https://raw.githubusercontent.com/microsoft/vcpkg/mast
 "name": "no-baseline",
 "dependencies": ["fmt"]
}

11

no-baseline $ cmake -B build -S . \
 -DCMAKE_TOOLCHAIN_FILE=~/vcpkg/scripts/buildsystems/vcpkg.cmake

-- Running vcpkg install
Detecting compiler hash for triplet x64-linux...
Compiler found: /usr/bin/c++
The following packages will be built and installed:
 fmt:x64-linux -> 10.1.1
 * vcpkg-cmake:x64-linux -> 2023-05-04
 * vcpkg-cmake-config:x64-linux -> 2022-02-06#1
Additional packages (*) will be modified to complete this operation.
...

12

no-baseline $ cmake -B build -S . \
 -DCMAKE_TOOLCHAIN_FILE=~/vcpkg-2/scripts/buildsystems/vcpkg.cma
-- Running vcpkg install
Detecting compiler hash for triplet x64-linux...
The following packages will be built and installed:
 fmt:x64-linux -> 11.0.2
 * vcpkg-cmake:x64-linux -> 2024-04-23
 * vcpkg-cmake-config:x64-linux -> 2024-05-23
Additional packages (*) will be modified to complete this operation.
...

13

Always specify version baseline

14

The vcpkg docs used to point towards builtin-
baseline as the way to specify baseline version.

15

The vcpkg docs used to point towards builtin-
baseline as the way to specify baseline version.

Don't use builtin-baseline

15.1

{
 "name": "builtin-baseline",
 "builtin-baseline": "68d349964cb4e8da561fd849d9491e6ba11c5681",
 "dependencies": [
 "fmt"
]
}

16

builtin-baseline$ cmake -B build -S .
 -DCMAKE_TOOLCHAIN_FILE=~/vcpkg/scripts/buildsystems/vcpkg.cmake

-- Running vcpkg install
error: while checking out baseline from commit '68d34996',
 failed to `git show` versions/baseline.json. This may
 be fixed by fetching commits with `git fetch`.
error: git failed with exit code: (128).
fatal: path 'versions/baseline.json' exists on disk, but not
 in '68d34996'
while checking out baseline 68d34996
while loading baseline version for fmt

17

Don't use builtin-baseline

18

$ cat vcpkg-configuration.json
{
 "default-registry": {
 "kind": "git",
 "repository": "https://github.com/Microsoft/vcpkg",
 "baseline": "68d349964cb4e8da561fd849d9491e6ba11c5681"
 }
}

19

$ cat vcpkg-configuration.json
{
 "default-registry": {
 "kind": "git",
 "repository": "https://github.com/Microsoft/vcpkg",
 "baseline": "68d349964cb4e8da561fd849d9491e6ba11c5681"
 }
}

{
 "name": "builtin-baseline",
 "dependencies": [
 "fmt"
],
 "vcpkg-configuration" : {
 "default-registry": {
 "kind": "git",
 "repository": "https://github.com/Microsoft/vcpkg",
 "baseline": "0e47c1985273129e4d0ee52ff73bed9125555de8"
 }
 }
}

19.1

Remember that vcpkg resolves version
constraints using Minimal Version Selection

20

Remember that vcpkg resolves version
constraints using Minimal Version Selection

This will become relevant later in the talk.

20.1

VCPKG ISSUES - PRELUDE

21

The examples will use 2 projects, libfoo and foosdk

22

The examples will use 2 projects, libfoo and foosdk

foosdk will always rely on libfoo

22.1

The examples will use 2 projects, libfoo and foosdk

foosdk will always rely on libfoo

The manifest will contain "baseline" as shorthand for
default registry configuration

22.2

CONSTRAINTS OVERRIDEN
BY BASELINE

23

The baseline always inserts constraints into resolution

24

The baseline always inserts constraints into resolution
{
 "name": "libfoo",
 "dependencies": [
 { "name": "fmt", "version>=": "9.1.0" }
],
 "baseline": "0e47c1985273129e4d0ee52ff73bed9125555de8"
}

24.1

The baseline always inserts constraints into resolution
{
 "name": "libfoo",
 "dependencies": [
 { "name": "fmt", "version>=": "9.1.0" }
],
 "baseline": "0e47c1985273129e4d0ee52ff73bed9125555de8"
}

baseline-constraints$ cmake -B b -S . -DCMAKE_TOOLCHAIN_FILE=...

-- Running vcpkg install
...

The following packages will be built and installed:
 fmt:x64-linux@10.1.1
 * vcpkg-cmake:x64-linux@2023-05-04
 * vcpkg-cmake-config:x64-linux@2022-02-06#1

24.2

If you want the dependencies at the version you
specified, you have to use old baseline.

25

If you want the dependencies at the version you
specified, you have to use old baseline.

Using old baseline means that you use old versions of
transitive dependencies

25.1

The other option is using explicit overrides

26

The other option is using explicit overrides
{
 "name": "libfoo",
 "dependencies": [
 { "name": "fmt", "version>=": "9.1.0" }
],
 "overrides": [
 { "name": "fmt", "version": "9.1.0" }
]
}

26.1

The other option is using explicit overrides
{
 "name": "libfoo",
 "dependencies": [
 { "name": "fmt", "version>=": "9.1.0" }
],
 "overrides": [
 { "name": "fmt", "version": "9.1.0" }
]
}

baseline-constraints$ cmake -B b -S . -DCMAKE_TOOLCHAIN_FILE=...

-- Running vcpkg install
...

The following packages will be built and installed:
 fmt:x64-linux@9.1.0
 * vcpkg-cmake:x64-linux@2023-05-04
 * vcpkg-cmake-config:x64-linux@2022-02-06#1

26.2

But overrides don't propagate from dependencies

27

But overrides don't propagate from dependencies
{
 "name": "foosdk",
 "dependencies": ["libfoo"]
}

27.1

But overrides don't propagate from dependencies
{
 "name": "foosdk",
 "dependencies": ["libfoo"]
}

foosdk$ cmake -B b -S . -DCMAKE_TOOLCHAIN_FILE=...

-- Running vcpkg install
...

The following packages will be built and installed:
 * fmt:x64-linux@10.1.1
 libfoo:x64-linux@0.0.0
 * vcpkg-cmake:x64-linux@2023-05-04
 * vcpkg-cmake-config:x64-linux@2022-02-06#1

27.2

To fix this, you have to add overrides from your
dependencies to your own overrides.

{
 "name": "foosdk",
 "dependencies": ["libfoo"],
 "overrides": [
 { "name": "fmt", "version": "9.1.0" }
]
}

28

This breaks the dependency management abstraction.

29

This breaks the dependency management abstraction.

You have to manually specify versions of dependencies
that you don't know about.

29.1

This breaks the dependency management abstraction.

You have to manually specify versions of dependencies
that you don't know about.

And so do your own dependees.

29.2

BUT WAIT!

30

BUT WAIT!
THERE IS MORE

30.1

Old baseline might not contain a port from the registry

31

Old baseline might not contain a port from the registry

This will cause the version resolution to fail

31.1

$ cat ~/vcpkg/versions/b-/boost-cmake.json
{
 "versions": [
 ...
 {
 "git-tree": "bb385ffc8aa74989b8198a777f3181b3a209451a",
 "version": "1.85.0",
 "port-version": 0
 },
 ...

32

$ cat ~/vcpkg/versions/b-/boost-cmake.json
{
 "versions": [
 ...
 {
 "git-tree": "bb385ffc8aa74989b8198a777f3181b3a209451a",
 "version": "1.85.0",
 "port-version": 0
 },
 ...

{
 "name": "baseline-missing-port",
 "dependencies": [
 {
 "name": "boost-cmake",
 "version>=": "1.85.0"
 }
],
 "baseline": "16ee2ecb31788c336ace8bb14c21801efb6836e4"
}

32.1

baseline-missing-port$ cmake -B b -S . -DCMAKE_TOOLCHAIN_FILE=...

-- Running vcpkg install
error: the baseline does not contain an entry for port boost-cmake
-- Running vcpkg install - failed

33

34

CONFLICT IN VERSION
CONSTRAINTS

35

vcpkg supports only version>= constraints

36

vcpkg supports only version>= constraints

But resolving two constraints can still fail

36.1

{
 "name": "libfoo",
 "dependencies": [
 { "name": "abseil", "version>=": "20211102.1" }
]
}

37

{
 "name": "libfoo",
 "dependencies": [
 { "name": "abseil", "version>=": "20211102.1" }
]
}

{
 "name": "foosdk",
 "dependencies": [
 { "name": "abseil", "version>=": "20230802.1" },
 "libfoo"
]
}

37.1

$ cmake -B build -S . -DCMAKE_TOOLCHAIN_FILE=...

-- Running vcpkg install
Fetching registry information from https://github.com/Microsoft/vcpk
error: version conflict on abseil:x64-linux:
 libfoo required 20211102.1, which cannot be
 compared with the version 20230802.0.

The versions have incomparable schemes:
 abseil@20230802.1 has scheme relaxed
 abseil@20211102.1 has scheme string

38

vcpkg recognizes 4 different version types

version (relaxed version)
version-semver
version-date
version-string

39

vcpkg only compares versions within the same domain

40

vcpkg only compares versions within the same domain

version-strings are incomparable by definition*

40.1

In Jan 2022 I convinced Billy that version-semver and
version-relaxed are the same domain

41

In Jan 2022 I convinced Billy that version-semver and
version-relaxed are the same domain

But vcpkg does not accept date-like versions
2021.01.01 as a relaxed version.

41.1

Remember: baseline's constraints are always
inserted.

42

Remember: baseline's constraints are always
inserted.

{
 "name": "libfoo",
 "baseline": "1d206dae085048388c7034eff0058899fedcb1ba",
 "dependencies": [
 { "name": "abseil", "version>=": "2021-03-24" }
]
}

42.1

foolib$ cmake -B build -S . -DCMAKE_TOOLCHAIN_FILE=...

-- Running vcpkg install
Fetching registry information from https://github.com/Microsoft/vcpk
error: version conflict on abseil:x64-linux:
 foolib required 2021-03-24, which cannot be compared
 with the baseline version 20230802.1.

The versions have incomparable schemes:
 abseil@20230802.1 has scheme relaxed
 abseil@2021-03-24 has scheme date

43

44

INCONSISTENT VERSION
RESOLUTION

45

{
 "name": "libfoo",
 "baseline": "d090b933e923c0a69950423ae81fb9488d2d7bff",
 "dependencies": [
 {
 "name": "boost-circular-buffer",
 "version>=": "1.80.0"
 }
]
}

46

boost-mismatch> cmake -B build -S . ^
 -DCMAKE_TOOLCHAIN_FILE=c:/ubuntu/vcpkg/scripts/buildsyst

-- Running vcpkg install
Detecting compiler hash for triplet x64-windows...
The following packages will be built and installed:
 * boost-assert:x64-windows -> 1.79.0
 boost-circular-buffer:x64-windows -> 1.80.0
 * boost-concept-check:x64-windows -> 1.79.0
 * boost-config:x64-windows -> 1.79.0
 * boost-core:x64-windows -> 1.79.0
 ...
 ...

47

I originally found this issue with Boost packages,

48

I originally found this issue with Boost packages,

and I got it partially fixed for Boost 1.80#1.

48.1

I originally found this issue with Boost packages,

and I got it partially fixed for Boost 1.80#1.

At least for the trivial case.

48.2

Boost packages now use version constraints when
referencing other Boost packages

49

Boost packages now use version constraints when
referencing other Boost packages

It is still easy to break by mistake though

49.1

{
 "name": "libfoo",
 "dependencies": [
 { "name": "boost-icl", "version>=": "1.82.0" }
]
}

50

{
 "name": "libfoo",
 "dependencies": [
 { "name": "boost-icl", "version>=": "1.82.0" }
]
}

{
 "name": "foosdk",
 "baseline": "d090b933e923c0a69950423ae81fb9488d2d7bff",
 "dependencies": [
 { "name": "boost-circular-buffer", "version>=": "1.81.0" }
 "libfoo",
]
}

50.1

boost-mismatch-2> cmake -B build -S . ^
 -DCMAKE_TOOLCHAIN_FILE=c:/ubuntu/vcpkg/scripts/builds

-- Running vcpkg install
Detecting compiler hash for triplet x64-windows...
The following packages will be built and installed:
 ...
 * boost-bind:x64-windows -> 1.82.0
 * boost-build:x64-windows -> 1.82.0
 boost-circular-buffer:x64-windows -> 1.81.0
 ...

51

This issue applies to any "split package" of monolithic
project

52

This issue applies to any "split package" of monolithic
project

e.g. Qt or KDE

52.1

vcpkg mention this issue with Boost in their docs.

53

vcpkg mention this issue with Boost in their docs.

This is the suggested workaround:

53.1

vcpkg mention this issue with Boost in their docs.

This is the suggested workaround:
{
 "default-registry": {
 "kind": "git",
 "repository": "https://github.com/Microsoft/vcpkg",
 "baseline": "3265c187c74914aa5569b75355badebfdbab7987"
 },
 "registries": [
 {
 "kind": "git",
 "repository": "https://github.com/Microsoft/vcpkg",
 "baseline": "8424da584e59e05956913bf96f87654aa3096c7e",
 "packages": ["boost*", "boost-*"]
 }
]
}

53.2

For newer versions of Boost, you have to update the
pattern to include "vcpkg-boost".

54

OVERBUILDING TRANSITIVE
DEPENDENCIES

55

vcpkg has a (mis)feature called "default features"

56

vcpkg has a (mis)feature called "default features"

This is a set of features of port to build by default

56.1

Default features o�en lead to large package

57

Default features o�en lead to large package
{
 "name": "libfoo",
 "dependencies": [
 {
 "name": "opencv4",
 "features": ["png"],
 "version>=": "4.8.0"
 }
]
}

57.1

libfoo$ cmake -B build -S . -DCMAKE_TOOLCHAIN_FILE=...

-- Running vcpkg install
Detecting compiler hash for triplet x64-linux...
The following packages will be built and installed:
 * at-spi2-atk:x64-linux -> 2.38.0
 * at-spi2-core:x64-linux -> 2.44.1#2
 * atk:x64-linux -> 2.38.0#5
 * brotli:x64-linux -> 1.0.9#5
 * bzip2[core,tool]:x64-linux -> 1.0.8#4
 * cairo[core,fontconfig,freetype,gobject,x11]:x64-linux -> 1.17.8
 * dirent:x64-linux -> 1.23.2#2
 * egl-registry:x64-linux -> 2022-09-20
 * expat:x64-linux -> 2.5.0#3
 * fontconfig:x64-linux -> 2.14.2
 * freetype[brotli,bzip2,core,png,zlib]:x64-linux -> 2.12.1#3
 ...
Installing 1/44 vcpkg-cmake-config:x64-linux...

58

Thankfully, default features can be disabled
{
 "name": "libfoo",
 "dependencies": [
 {
 "name": "opencv4",
 "default-features": false,
 "features": ["png"],
 "version>=": "4.8.0"
 }
]
}

59

libfoo$ cmake -B build -S . -DCMAKE_TOOLCHAIN_FILE=...

-- Running vcpkg install
Detecting compiler hash for triplet x64-linux...
The following packages will be built and installed:
 * libpng:x64-linux -> 1.6.39#1
 opencv4[core,png]:x64-linux -> 4.8.0
 * vcpkg-cmake:x64-linux -> 2022-12-22
 * vcpkg-cmake-config:x64-linux -> 2022-02-06#1
 * vcpkg-get-python-packages:x64-linux -> 2022-06-30
 * zlib:x64-linux -> 1.2.13

Installing 1/6 vcpkg-cmake:x64-linux...

60

But vcpkg can (and will) happily ignore that

61

{
 "name": "libfoo",
 "dependencies": [
 {
 "name": "opencv4",
 "default-features": false,
 "features": ["png"],
 "version>=": "4.8.0"
 }
]
}

62

{
 "name": "libfoo",
 "dependencies": [
 {
 "name": "opencv4",
 "default-features": false,
 "features": ["png"],
 "version>=": "4.8.0"
 }
]
}

{
 "name": "foosdk",
 "dependencies": ["libfoo"]
}

62.1

foosdk$ cmake -B build -S . -DCMAKE_TOOLCHAIN_FILE=...

-- Running vcpkg install
Detecting compiler hash for triplet x64-linux...
The following packages will be built and installed:
 * at-spi2-atk:x64-linux -> 2.38.0
 * at-spi2-core:x64-linux -> 2.44.1#2
 * atk:x64-linux -> 2.38.0#5
 * brotli:x64-linux -> 1.0.9#5
 * bzip2[core,tool]:x64-linux -> 1.0.8#4
 * cairo[core,fontconfig,freetype,gobject,x11]:x64-linux -> 1.17.8
 * dirent:x64-linux -> 1.23.2#2
 * egl-registry:x64-linux -> 2022-09-20
 * expat:x64-linux -> 2.5.0#3
 * fontconfig:x64-linux -> 2.14.2
 * freetype[brotli,bzip2,core,png,zlib]:x64-linux -> 2.12.1#3
 ...

Installing 1/45 vcpkg-cmake-config:x64-linux...

63

vcpkg flat out ignores the "default-features" option in
dependencies

64

vcpkg flat out ignores the "default-features" option in
dependencies

A PR to fix this has been open for ~2.5 years

64.1

The suggested workaround is simple, and kinda dumb
{
 "name": "foosdk",
 "dependencies": [
 "libfoo",
 {
 "name": "opencv4",
 "default-features": false
 }
]
}

65

The suggested workaround is simple, and kinda dumb
{
 "name": "foosdk",
 "dependencies": [
 "libfoo",
 {
 "name": "opencv4",
 "default-features": false
 }
]
}

No, you can't have this in overrides.

65.1

How do you tell whether opencv4 is real dependency?

66

How do you tell whether opencv4 is real dependency?
 {
 "$comment": "not a real depepdecy",
 "name": "opencv4",
 "default-features": false
 }

66.1

BUT WAIT!

67

BUT WAIT!
THERE IS MORE

67.1

It can get worse than just building too much

68

It can get worse than just building too much

ffmpeg's default build used to be GPL licensed

68.1

It can get worse than just building too much

ffmpeg's default build used to be GPL licensed
If your dependency used ffmpeg, you were silently

linking to GPL code

68.2

It can get worse than just building too much

ffmpeg's default build used to be GPL licensed
If your dependency used ffmpeg, you were silently

linking to GPL code

69

UNVERSIONED HELPER
SCRIPTS

70

Some of the vcpkg's helper scripts are unversioned

71

Some of the vcpkg's helper scripts are unversioned

They are used from your local vcpkg checkout

71.1

Your build can change even without changing the
vcpkg binary, the baseline or the version specs.

72

Your build can change even without changing the
vcpkg binary, the baseline or the version specs.

Yes, I have had to debug this when some of our CI
machines started randomly failing.

72.1

Your build can change even without changing the
vcpkg binary, the baseline or the version specs.

Yes, I have had to debug this when some of our CI
machines started randomly failing.

Don't let your CI machines update vcpkg implicitly.

72.2

I found a fun example yesterday:

73

I found a fun example yesterday:
$ cd ~/vcpkg
$ git checkout 826ebc235f28261dbf150fe558f6fc00b4783a3e
$ cd ~/vcpkg-examples/version-type-mismatch/foosdk
$ cmake -B build -S . \
 -DCMAKE_TOOLCHAIN_FILE=~/vcpkg/scripts/buildsystems/vcpkg.cmake

-- Running vcpkg install
error: In manifest mode, `vcpkg install` does not support
 individual package arguments.
To install additional packages, edit vcpkg.json and then run
`vcpkg install` without any package arguments.
...

73.1

VCPKG: GOOD PARTS

74

It is easy to get started
$ git checkout https://github.com/Microsoft/vcpkg
$ cd vcpkg && ./bootstrap-vcpkg.sh

75

It is easy to get started
$ git checkout https://github.com/Microsoft/vcpkg
$ cd vcpkg && ./bootstrap-vcpkg.sh

$ mkdir new-project
$ ~/vcpkg/vcpkg new --application
$ ls
vcpkg-configuration.json vcpkg.json

75.1

It is easy to get started
$ git checkout https://github.com/Microsoft/vcpkg
$ cd vcpkg && ./bootstrap-vcpkg.sh

$ mkdir new-project
$ ~/vcpkg/vcpkg new --application
$ ls
vcpkg-configuration.json vcpkg.json

$ ~/vcpkg/vcpkg add port fmt
Succeeded in adding ports to vcpkg.json file.
$ cat vcpkg.json
{
 "dependencies": [
 "fmt"
]
}

75.2

The baseline is a curated set of packages & package
versions that are tested to build together.

76

The baseline is a curated set of packages & package
versions that are tested to build together.

You can expect both x64 and Arm builds to work for
common platforms.

76.1

vcpkg exposes the package's build system

77

vcpkg exposes the package's build system

The exported targets will be the same, whether you
installed the package manually or through vcpkg

77.1

Triplet files let you customize the build heavily

78

Triplet files let you customize the build heavily
Custom triplet for x64 Linux.
set(VCPKG_TARGET_ARCHITECTURE x64)
set(VCPKG_CRT_LINKAGE dynamic)
set(VCPKG_CMAKE_SYSTEM_NAME Linux)

78.1

Do you want to link everything statically?

79

Do you want to link everything statically?
set(VCPKG_LIBRARY_LINKAGE static)

79.1

Do you want to link everything statically?
set(VCPKG_LIBRARY_LINKAGE static)

But you need to comply with FFmpeg's LGPL license!

79.2

Do you want to link everything statically?
set(VCPKG_LIBRARY_LINKAGE static)

But you need to comply with FFmpeg's LGPL license!
if (${PORT} MATCHES "ffmpeg")
 set(VCPKG_LIBRARY_LINKAGE dynamic)
else ()
 set(VCPKG_LIBRARY_LINKAGE static)
endif ()

79.3

Do you want to target at least Zen v3 machines?

80

Do you want to target at least Zen v3 machines?
set(VCPKG_C_FLAGS "${VCPKG_C_FLAGS} -march=znver3")
set(VCPKG_CXX_FLAGS "${VCPKG_CXX_FLAGS} -march=znver3")

80.1

Control symbol visibility across your dependencies?

81

Control symbol visibility across your dependencies?
Compile dependencies with sanitizers to avoid FPs?

81.1

Control symbol visibility across your dependencies?
Compile dependencies with sanitizers to avoid FPs?
Keep consistent language standard everywhere?

81.2

Control symbol visibility across your dependencies?
Compile dependencies with sanitizers to avoid FPs?
Keep consistent language standard everywhere?
Compile with LTO across all of your dependencies?

81.3

Control symbol visibility across your dependencies?
Compile dependencies with sanitizers to avoid FPs?
Keep consistent language standard everywhere?
Compile with LTO across all of your dependencies?
…

81.4

Package metadata are non-executable

82

LICENSING

83

Do you know the licenses of all your dependencies?

84

Do you know the licenses of all your dependencies?

Can you audit them automatically?

84.1

Do you know the licenses of all your dependencies?

Can you audit them automatically?

Do you comply with MIT?

84.2

vcpkg makes handling licenses easy

85

vcpkg makes handling licenses easy reasonably hard

85.1

vcpkg makes handling licenses easy reasonably hard

vcpkg copies the port's license file into the buildtree

85.2

vcpkg makes handling licenses easy reasonably hard

vcpkg copies the port's license file into the buildtree

It also tries to provide SPDX-compliant summary

85.3

CONCLUSION

86

DON'T be scared of vcpkg

87

DON'T be scared of vcpkg

DO be careful when using it

87.1

vcpkg is functional package manager with lot of warts

88

vcpkg is functional package manager with lot of warts

Some of these warts can cause lot of problems

88.1

vcpkg is functional package manager with lot of warts

Some of these warts can cause lot of problems

And it is good to be aware of them

88.2

But vcpkg also gets lot of things right

and it has served us well

89

If you already have working Conan setup, keep it

90

If you already have working Conan setup, keep it

If you are not using a package manager, try vcpkg

90.1

If you already have working Conan setup, keep it

If you are not using a package manager, try vcpkg

No, FetchContent is not a package manager.

90.2

THE END
https://github.com/horenmar/examples-using-vcpkg-

in-anger

91

https://github.com/horenmar/examples-using-vcpkg-in-anger
https://github.com/horenmar/examples-using-vcpkg-in-anger

