
WHERE DID <random> GO WRONG?

Martin Hořeňovský

1

WHERE DID <random> GO WRONG?

Martin Hořeňovský

2

—Stephen T. Lavavej

<random> is really elegantly
designed.

I love this header.

3

— Andrei Alexandrescu

I think it's the best random
number library design of all, by

a mile.

4

That was some high praise ...

5

That was some high praise ...

... but in practice nobody uses <random>

5.1

That was some high praise ...

... but in practice nobody uses <random>

Why?

5.2

Some people don't like the complexity

6

To generate 1D6 throw, you need

7

To generate 1D6 throw, you need

an entropy source

7.1

To generate 1D6 throw, you need

an entropy source
a random number engine

7.2

To generate 1D6 throw, you need

an entropy source
a random number engine
a uniform integer distribution

7.3

#include <random>

int rollD6() {
 std::random_device rd;

1
2
3
4

 std::mt19937_64 rnd(rd());5
 std::uniform_int_distribution<int> dist(1, 6);6
 return dist(rnd);7
}8

8

#include <random>

int rollD6() {
 std::random_device rd;

1
2
3
4

 std::mt19937_64 rnd(rd());5
 std::uniform_int_distribution<int> dist(1, 6);6
 return dist(rnd);7
}8

 std::mt19937_64 rnd(rd());

#include <random>1
 2
int rollD6() {3
 std::random_device rd;4

5
 std::uniform_int_distribution<int> dist(1, 6);6
 return dist(rnd);7
}8

8.1

#include <random>

int rollD6() {
 std::random_device rd;

1
2
3
4

 std::mt19937_64 rnd(rd());5
 std::uniform_int_distribution<int> dist(1, 6);6
 return dist(rnd);7
}8

 std::mt19937_64 rnd(rd());

#include <random>1
 2
int rollD6() {3
 std::random_device rd;4

5
 std::uniform_int_distribution<int> dist(1, 6);6
 return dist(rnd);7
}8

 std::uniform_int_distribution<int> dist(1, 6);
 return dist(rnd);
}

#include <random>1
 2
int rollD6() {3
 std::random_device rd;4
 std::mt19937_64 rnd(rd());5

6
7
8

8.2

Is it complex?

9

Is it complex?

Yes

9.1

Is it complex?

Yes

Is it big problem?

9.2

NO

10

In the context of C++, it is fine.

11

In the context of C++, it is fine.

But there is no value in the complexity of random.

11.1

Let's refactor the function to be reproducible

12

Let's refactor the function to be reproducible
template <typename RNG>
int rollD6(RNG& rng) {

1
2

 std::uniform_int_distribution<int> dist(1, 6);3
 return dist(rng);4
}5

12.1

Let's refactor the function to be reproducible
template <typename RNG>
int rollD6(RNG& rng) {

1
2

 std::uniform_int_distribution<int> dist(1, 6);3
 return dist(rng);4
}5

 std::uniform_int_distribution<int> dist(1, 6);
 return dist(rng);

template <typename RNG>1
int rollD6(RNG& rng) {2

3
4

}5

12.2

But why work with ints, when uint8_t is sufficient?

13

But why work with ints, when uint8_t is sufficient?

template <typename RNG>
uint8_t rollD6(RNG& rng) {
 std::uniform_int_distribution<uint8_t> dist(1, 6);
 return dist(rng);
}

13.1

But why work with ints, when uint8_t is sufficient?

template <typename RNG>
uint8_t rollD6(RNG& rng) {
 std::uniform_int_distribution<uint8_t> dist(1, 6);
 return dist(rng);
}

13.2

Throughout this subclause
[rand], the effect of

instantiating a template:

[...]

that has a template type
parameter named UIntType

14

— [rand.req.genl]-1.6

... is undefined unless [...] is one
of

unsigned short,
unsigned int,
unsigned long,
unsigned long long.

15

— [rand.req.genl]-1.6

... is undefined unless [...] is one
of

unsigned short,
unsigned int,
unsigned long,
unsigned long long.

16

STL has opened library issue 2326 about this in 2013.

17

STL has opened library issue 2326 about this in 2013.

It was closed as NAD in 2017.

17.1

STL has opened library issue 2326 about this in 2013.

It was closed as NAD in 2017.

There is a new one (4109) opened few months back.

17.2

Let's go back to our previous design

18

Let's go back to our previous design

template <typename RNG>
int rollD6(RNG& rng) {
 std::uniform_int_distribution<int> dist(1, 6);
 return dist(rng);
}

18.1

Let's go back to our previous design

template <typename RNG>
int rollD6(RNG& rng) {
 std::uniform_int_distribution<int> dist(1, 6);
 return dist(rng);
}

18.2

Different stdlibs can return different results.

19

Different stdlibs can return different results.

So can different versions of the same stdlib.

19.1

The real failing of <random> is that it serves nobody.

20

Some people want simplicity

21

Some people want simplicity

Other people want powerful and correct primitives

21.1

Some people want simplicity

Other people want powerful and correct primitives

Most people want reproducibility

21.2

And <random> provides none of this.

22

CONTENTS OF THE TALK
The 1000-feet view of <random>
The issues with using <random> in practice
Basic outline of how to fix it all

23

WHAT'S IN <RANDOM>?

24

Uniform bit generators (random engines)

25

Uniform bit generators (random engines)
Statistical distributions

25.1

Uniform bit generators (random engines)
Statistical distributions
Helpers

25.2

Uniform bit generators (random engines)
Statistical distributions
Helpers

And most (all?) of them are subtly broken.

25.3

RANDOM NUMBER ENGINES

26

<random> provides 7 predefined URBGs

27

<random> provides 7 predefined URBGs

minstd_rand0

27.1

<random> provides 7 predefined URBGs

minstd_rand0
minstd_rand

27.2

<random> provides 7 predefined URBGs

minstd_rand0
minstd_rand
mt19937

27.3

<random> provides 7 predefined URBGs

minstd_rand0
minstd_rand
mt19937
mt19937_64

27.4

<random> provides 7 predefined URBGs

minstd_rand0
minstd_rand
mt19937
mt19937_64
ranlux24

27.5

<random> provides 7 predefined URBGs

minstd_rand0
minstd_rand
mt19937
mt19937_64
ranlux24
ranlux48

27.6

<random> provides 7 predefined URBGs

minstd_rand0
minstd_rand
mt19937
mt19937_64
ranlux24
ranlux48
knuth_b

27.7

Some random number engine adapters,

28

Some random number engine adapters,

and generic engine templates.

28.1

DISTRIBUTIONS

29

<random> provides 20 distributions in 5 families

30

<random> provides 20 distributions in 5 families

Uniform distributions

30.1

<random> provides 20 distributions in 5 families

Uniform distributions
Bernoulli distributions

30.2

<random> provides 20 distributions in 5 families

Uniform distributions
Bernoulli distributions
Poisson distributions

30.3

<random> provides 20 distributions in 5 families

Uniform distributions
Bernoulli distributions
Poisson distributions
Normal distributions

30.4

<random> provides 20 distributions in 5 families

Uniform distributions
Bernoulli distributions
Poisson distributions
Normal distributions
Sampling distributions

30.5

All distributions are objects.

31

All distributions are objects.

The standard doesn't* specify the implementation,
only statistical properties of outputs.

31.1

UTILITIES/HELPERS

32

std::generate_canonical - Generates single
floating point number in [0, 1)

33

std::generate_canonical - Generates single
floating point number in [0, 1)
std::random_device - Generates random bits

33.1

std::generate_canonical - Generates single
floating point number in [0, 1)
std::random_device - Generates random bits
std::seed_seq - Allows you to seed an engine
with multiple values

33.2

WHAT'S WRONG WITH
<RANDOM>?

34

RANDOM NUMBER ENGINES

35

minstd_rand0 (1969)
minstd_rand (1993)
mt19937 (1998)
mt19937_64 (2000)
ranlux24 (1994)
ranlux48 (1994)
knuth_b (1981)

36

All the engines are old.

37

All the engines are old.

All are slow(ish).

37.1

All the engines are old.

All are slow(ish).

MT is the best one, but sizeof(mt19937) == 5000!

37.2

They are impossible to seed.

38

std::mt19937 my_rng(std::random_device{}());

39

std::mt19937 my_rng(std::random_device{}());

mt19937 has 624 32-bit integers as internal state

39.1

std::mt19937 my_rng(std::random_device{}());

mt19937 has 624 32-bit integers as internal state

We provided 1 uint (might not even be 32 bits)

39.2

std::mt19937 my_rng(std::random_device{}());

mt19937 has 624 32-bit integers as internal state

We provided 1 uint (might not even be 32 bits)

That's 0.16% of possible seed states

39.3

Let's use std::seed_seq instead

40

Let's use std::seed_seq instead
constexpr size_t seed_data_size = 624;
std::vector<unsigned int> data(seed_data_size);
std::generate(data.begin(), data.end(), std::random_device{});
std::seed_seq seq(data);
std::mt19937 mt(seq);

40.1

Let's use std::seed_seq instead
constexpr size_t seed_data_size = 624;
std::vector<unsigned int> data(seed_data_size);
std::generate(data.begin(), data.end(), std::random_device{});
std::seed_seq seq(data);
std::mt19937 mt(seq);

Still broken (we will see why later)

40.2

How to determine seed_data_size?

41

How to determine seed_data_size?
constexpr size_t seed_data_size = std::mt19937::state_size;

std::vector<unsigned int> data(seed_data_size);
...

41.1

How to determine seed_data_size?
constexpr size_t seed_data_size = std::mt19937::state_size;

std::vector<unsigned int> data(seed_data_size);
...

That was easy.

41.2

constexpr size_t seed_data_size = std::mt19937_64::state_size;

std::vector<unsigned int> data(seed_data_size);
...

42

constexpr size_t seed_data_size = std::mt19937_64::state_size;

std::vector<unsigned int> data(seed_data_size);
...

This compiles...

42.1

constexpr size_t seed_data_size = std::mt19937_64::state_size;

std::vector<unsigned int> data(seed_data_size);
...

This compiles...

... but is wrong.

42.2

constexpr size_t seed_data_size = std::mt19937_64::state_size;

std::vector<unsigned int> data(seed_data_size);
...

This compiles...

... but is wrong.

std::mt19937_64 uses 64 bit types for state.

42.3

Let's try again

43

Let's try again
// word_size is in bits, because 🤷
constexpr auto word_size = std::mt19937_64::word_size / CHAR_BITS;
constexpr auto rd_call_coefficient = word_size / sizeof(uint);
constexpr auto state_size = std::mt19937_64::state_size;

std::vector<unsigned int> data(state_size * rd_call_coefficient);
std::generate(data.begin(), data.end(), std::random_device{});
std::seed_seq seq(data);
std::mt19937_64 mt(seq);

43.1

Let's try again
// word_size is in bits, because 🤷
constexpr auto word_size = std::mt19937_64::word_size / CHAR_BITS;
constexpr auto rd_call_coefficient = word_size / sizeof(uint);
constexpr auto state_size = std::mt19937_64::state_size;

std::vector<unsigned int> data(state_size * rd_call_coefficient);
std::generate(data.begin(), data.end(), std::random_device{});
std::seed_seq seq(data);
std::mt19937_64 mt(seq);

44

The code is now logically correct ...

45

The code is now logically correct ...

... but practically wrong (details later)

45.1

Let's try generic seeding

46

Let's try generic seeding
template <typename RNG>
void seed_rng(RNG& rng) {
 constexpr auto word_size = ????;
 constexpr auto state_size = ????;
}

46.1

Let's try generic seeding
template <typename RNG>
void seed_rng(RNG& rng) {
 constexpr auto word_size = ????;
 constexpr auto state_size = ????;
}

We can't query arbitrary engine for state size.

46.2

Let's try generic seeding
template <typename RNG>
void seed_rng(RNG& rng) {
 constexpr auto word_size = ????;
 constexpr auto state_size = ????;
}

We can't query arbitrary engine for state size.

mt19937 is a standardization accident.

46.3

DISTRIBUTIONS

47

— Donald Knuth

Random numbers should not be
generated with a method

chosen at random.

48

Distributions in the standard are

49

Distributions in the standard are

irreproducible

49.1

Distributions in the standard are

irreproducible
opaque

49.2

Distributions in the standard are

irreproducible
opaque
!!buggy!!

49.3

Implementation of the distribution has implications

50

Implementation of the distribution has implications

Box-Muller transform cannot return values further than
6.66 standard deviation from mean.

50.1

Does it matter?

51

Does it matter?

¯_(ツ)_/¯

51.1

6.66 σ means chance of an event.2.738 ∗ 10−11

52

6.66 σ means chance of an event.2.738 ∗ 10−11

That's roughly .1
235

52.1

6.66 σ means chance of an event.2.738 ∗ 10−11

That's roughly .1
235

That's so unlikely, that ...

52.2

... if your machine was generating normally distributed
numbers

53

... if your machine was generating normally distributed
numbers

It would've generated about dozen during this talk.

53.1

LET'S TALK ABOUT BUGS IN DISTRIBUTIONS

54

std::uniform_real_distribution(a, b)
returns values in [a, b)

55

std::uniform_real_distribution(a, b)
returns values in [a, b)

std::uniform_real_distribution<> dist(0., 1.);
assert(dist(rng) < 1.); // with primed rng,
 // fails on some platforms

55.1

Why?

56

Why?

There is an understanding, that the distribution is
transformation on top of generate_canonical.

56.1

Let's say this isn't a problem for us, because we can
rejection-sample the bug away

57

Let's say this isn't a problem for us, because we can
rejection-sample the bug away

uniform_real_distribution is not actually
uniform

57.1

The standard assumes that

58

The standard assumes that

a + x ∗ (b − a)

58.1

The standard assumes that

a + x ∗ (b − a)

gives you a number in given[a, b)

x ∈ [0, 1)

58.2

The standard assumes that

a + x ∗ (b − a)

gives you a number in given[a, b)

x ∈ [0, 1)

For real numbers, this is true.
58.3

For floats, it is not.

Floats are quantized reals. Rounding will make some
floats overrepresented.

59

There are few more specification bugs in distributions.

60

There are few more specification bugs in distributions.

Let's not get into them.

60.1

HELPERS

61

Let's start with generate_canonical

62

The standard specifies that it returns numbers in [0, 1).

63

The standard specifies that it returns numbers in [0, 1).

The standard specifies the algorithm it uses.

63.1

The standard specifies that it returns numbers in [0, 1).

The standard specifies the algorithm it uses.

The algorithm is mathematically correct.

63.2

But only when applied to real numbers.

64

But only when applied to real numbers.

In floats it will return 1 when fed specific inputs.

64.1

This is a LWG issue that was tentatively fixed for C++23

65

This is a LWG issue that was tentatively fixed for C++23

But the latest version of libcxx and MS-STL will return 1

65.1

Let's talk std::random_device

66

random_device is allowed to be deterministic

67

random_device is allowed to be deterministic

68

You can check the source code of your library,

69

You can check the source code of your library,

but there is no programmatic way of checking

69.1

THIS IS A REAL ISSUE

70

THIS IS A REAL ISSUE

MinGW used to use mt19937 as the random_device

70.1

Due to ABI compatibility, libstdc++ is stuck with this

71

Due to ABI compatibility, libstdc++ is stuck with this
static_assert(sizeof(std::random_device) == 5000);

71.1

Finally, std::seed_seq

72

std::seed_seq has a very simple issue

73

std::seed_seq has a very simple issue

The standard mandates the algorithm it uses to stretch
the input bits across arbitrary output size.

73.1

THIS ALGORITHM LOSSES ENTROPY

74

int main() {
 std::seed_seq seq1({0xf5e5b5c0, 0xdcb8e4b1}),
 seq2({0xd34295df, 0xba15c4d0});

 std::array<uint32_t, 2> arr1, arr2;
 seq1.generate(arr1.begin(), arr1.end());
 seq2.generate(arr2.begin(), arr2.end());

 assert(arr1 == arr2);
}

75

But wait! There is more

76

But wait! There is more

seed_seq::generate writes out values mod 232

76.1

But wait! There is more

seed_seq::generate writes out values mod 232

Does your Engine use 32-bit types internally?

76.2

Remember this example?

77

Remember this example?
constexpr auto word_size = std::mt19937_64::word_size / CHAR_BITS;
constexpr auto rd_call_coefficient = word_size / sizeof(uint);
constexpr auto state_size = std::mt19937_64::state_size;

std::vector<unsigned int> data(state_size * rd_call_coefficient);
...

77.1

Remember this example?
constexpr auto word_size = std::mt19937_64::word_size / CHAR_BITS;
constexpr auto rd_call_coefficient = word_size / sizeof(uint);
constexpr auto state_size = std::mt19937_64::state_size;

std::vector<unsigned int> data(state_size * rd_call_coefficient);
...

All pointless, mt19937_64 uses 64 bit types for state.

77.2

BETTER <RANDOM>

78

The core design of <random> is good.

79

The core design of <random> is good.

Splitting generators and distributions was a great idea.

79.1

The core design of <random> is good.

Splitting generators and distributions was a great idea.

So how do we fix the actual implementation?

79.2

ENGINES

80

Fixing Engines is as easy as requiring a
state_size_bytes member in Engines.

81

Fixing Engines is as easy as requiring a
state_size_bytes member in Engines.

Oh and we should add some state-of-the-art PRNGs.

81.1

DISTRIBUTIONS

82

Three separate things to fix:

83

Three separate things to fix:

Pointless UB

83.1

Three separate things to fix:

Pointless UB
Reproducibility

83.2

Three separate things to fix:

Pointless UB
Reproducibility
uniform_real_distribution is just wrong

83.3

Let's talk reproducibility

84

Let's talk reproducibility

One approach is to keep the names, but standardize
the implementation of each distribution.

84.1

DOUBLING DOWN ON EXPERT-FRIENDLINESS

85

Standardize algorithms under their own name.

86

Standardize algorithms under their own name.

box_muller_transform,

86.1

Standardize algorithms under their own name.

box_muller_transform,
marsaglia_polar_method,

86.2

Standardize algorithms under their own name.

box_muller_transform,
marsaglia_polar_method,
...

86.3

Standardize algorithms under their own name.

box_muller_transform,
marsaglia_polar_method,
...

This provides full control to the user, so they can pick
the best algorithm according to their needs.

86.4

Fixing uniform_real_distribution is both very
easy, and very, very hard.

87

Fixing uniform_real_distribution is both very
easy, and very, very hard.

What do we even mean by generating uniformly
distributed floats in some range?

87.1

Do we mean generating

88

Do we mean generating

1. uniformly distributed real numbers in , and
converting them to corresponding floats?

[a, b)

88.1

Do we mean generating

1. uniformly distributed real numbers in , and
converting them to corresponding floats?

[a, b)

2. floats in with uniform chance of each?[a, b)

88.2

Do we mean generating

1. uniformly distributed real numbers in , and
converting them to corresponding floats?

[a, b)

2. floats in with uniform chance of each?[a, b)
3. floats uniformly distributed in ?[a, b)

88.3

Do we mean generating

1. uniformly distributed real numbers in , and
converting them to corresponding floats?

[a, b)

2. floats in with uniform chance of each?[a, b)
3. floats uniformly distributed in ?[a, b)

Each of these 3 is useful to someone.

88.4

Do we mean generating

1. uniformly distributed real numbers in , and
converting them to corresponding floats?

[a, b)

2. floats in with uniform chance of each?[a, b)
3. floats uniformly distributed in ?[a, b)

Each of these 3 is useful to someone.

uniform_real_distribution does none of these.

88.5

By standardizing algorithms under their name, we can
have all of these.

89

By standardizing algorithms under their name, we can
have all of these.

If someone figures out algorithm for the first one 🙃

89.1

HELPERS

90

generate_canonical has recently fixed wording

91

generate_canonical has recently fixed wording

Out of the 3 options, it does #3.

91.1

generate_canonical has recently fixed wording

Out of the 3 options, it does #3.

So what's there to fix?

91.2

There are ~1 billion representable floats in [0, 1).

92

There are ~1 billion representable floats in [0, 1).

generate_canonical can generate ~17M different floats
(1.7%)

92.1

There are ~1 billion representable floats in [0, 1).

generate_canonical can generate ~17M different floats
(1.7%)

For doubles, this ratio goes down to 0.2%

92.2

Does it matter?

93

Does it matter?

¯_(ツ)_/¯

93.1

Depends on the use case

94

Depends on the use case

Different algorithm can return any float in [0, 1).

94.1

seed_seq and the related concepts need to be
completely thrown away

95

Replacement seed sequence type has to

96

Replacement seed sequence type has to

not reduce entropy (be "as bijective as possible")

96.1

Replacement seed sequence type has to

not reduce entropy (be "as bijective as possible")
support any integral type for state

96.2

Replacement SeedSequence concepts should support
random_device as well as serializable seed sequences.

97

Finally, random_device

98

random_device should never be deterministic

99

random_device::entropy is a failed experiment,
drop it.

100

IS THAT ALL?

101

No

102

No

But it's enough to make <random> useful.

102.1

OTHER MISC IMPROVEMENTS

103

All* of <random> can be constexpr

104

All* of <random> can be constexpr

All bit generators and distributions should have bulk-
generation API

104.1

All* of <random> can be constexpr

All bit generators and distributions should have bulk-
generation API

Engines should be seedable with random_device

104.2

Clean up types to make more sense

105

Clean up types to make more sense

Fix wording on various distributions

105.1

Clean up types to make more sense

Fix wording on various distributions

...

105.2

But again, at this point we are talking about nice to
haves.

106

THE END
Time for questions!

107

Further reading:

https://wg21.link/P2058
https://wg21.link/P2059
https://wg21.link/P2060
https://codingnest.com/generating-random-
numbers-using-c-standard-library-the-problems/
https://codingnest.com/generating-random-
numbers-using-c-standard-library-the-solutions/
https://codingnest.com/random-distributions-are-
not-one-size-fits-all-part-1/
https://codingnest.com/random-distributions-are-
not-one-size-fits-all-part-2/

108

https://wg21.link/P2058
https://wg21.link/P2059
https://wg21.link/P2060
https://codingnest.com/generating-random-numbers-using-c-standard-library-the-problems/
https://codingnest.com/generating-random-numbers-using-c-standard-library-the-problems/
https://codingnest.com/generating-random-numbers-using-c-standard-library-the-solutions/
https://codingnest.com/generating-random-numbers-using-c-standard-library-the-solutions/
https://codingnest.com/random-distributions-are-not-one-size-fits-all-part-1/
https://codingnest.com/random-distributions-are-not-one-size-fits-all-part-1/
https://codingnest.com/random-distributions-are-not-one-size-fits-all-part-2/
https://codingnest.com/random-distributions-are-not-one-size-fits-all-part-2/

